Nothing Special   »   [go: up one dir, main page]

Skip to main content

Maximum Entropy Principle: Image Reconstruction

Entropy Optimization for Image Reconstruction

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burch SF, Gull SF, Skilling JK (1983) Image restoration by a powerful maximum entropy method. Computer Vision, Graphics, and Image Processing 23:113–128

    Article  Google Scholar 

  2. Censor Y, Herman GT (1987) On some optimization techniques in image reconstruction. Applied Numer Math 3:365–391

    Article  MathSciNet  MATH  Google Scholar 

  3. Fang S-C, Rajasekera JR, Tsao H-SJ (1997) Entropy optimization and mathematical programming. Kluwer, Dordrecht

    MATH  Google Scholar 

  4. Frieden BR (1972) Restoring with maximum likelihood and maximum entropy. J Optical Soc Amer 62:511–518

    Article  Google Scholar 

  5. Hendee WR (1983) The physical principles of computed tomography. Little, Brown and Company, Boston, MA

    Google Scholar 

  6. Herman GT (1975) A relaxation method for reconstructing objects from noisy X-rays. Math Program 8:1–19

    Article  MathSciNet  MATH  Google Scholar 

  7. Herman GT (ed) (1979) Image reconstruction from projections: implementation and applications. Springer, Berlin

    Google Scholar 

  8. Klaus M, Smith RT (1988) A Hilbert space approach to maximum entropy reconstruction. Math Meth Appl Sci 10:397–406

    Article  MathSciNet  MATH  Google Scholar 

  9. Minerbo G (1979) MENT: A maximum entropy algorithm for reconstructing a source from projection data. Computer Graphics and Image Processing 10:48–68

    Article  Google Scholar 

  10. Natterer F (1986) Mathematics of computerized tomography. Wiley, New York

    MATH  Google Scholar 

  11. Smith RT, Zoltani CK (1987) An application of the finite element method to maximum entropy tomographic image reconstruction. J Sci Comput 2(3):283–295

    Article  MATH  Google Scholar 

  12. Smith RT, Zoltani CK, Klem GJ, Coleman MW (1991) Reconstruction of tomographic images from sparse data sets by a new finite element maximum entropy approach. Applied Optics 30(5):573–582

    Article  Google Scholar 

  13. Stark H (ed) (1987) Image recovery: theory and application. Acad. Press, New York

    MATH  Google Scholar 

  14. Wang Y, Lu W (1992) Multi-criterion maximum entropy image reconstruction from projections. IEEE Trans Medical Imaging 11:70–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Fang, SC., Tsao, J.HS. (2008). Maximum Entropy Principle: Image Reconstruction . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_360

Download citation

Publish with us

Policies and ethics