Article Outline
Keywords
The Subdifferential
The Monotone Case
The Quasimonotone Case
The Pseudomonotone Case
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aussel D (1998) Subdifferential properties of quasiconvex and pseudoconvex functions. J Optim Th Appl 97:29–45
Aussel D, Corvellec JN, Lassonde M (1995) Mean value property and subdifferential criteria for lower semicontinuous functions. Trans Amer Math Soc 347:4147–4161
Avriel M, Diewert WE, Schaible S, Zang I (1988) Generalized concavity. Plenum, New York
Correa R, Jofre A, Thibault L (1992) Characterization of lower semicontinuous convexfunctions. Proc Amer Math Soc 116:67–72
Daniilidis A, Hadjisavvas N (1999) Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J Optim Th Appl 102:525–536
Daniilidis A, Hadjisavvas N (1999) On the subdifferentials of quasiconvex and pseudoconvex functions and cyclic monotonicity. J Math Anal Appl 237:30–42
Ellaia R, Hassouni A (1991) Characterization of nonsmooth functions through their generalized gradients. Optim 22:401–416
Hadjisavvas N (2001) The use of subdifferentials for studying generalized convex functions. J Statist Managem Systems no. March
Hadjisavvas N, Schaible S (1993) On strong pseudomonotonicity and (semi)strict quasimonotonicity. J Optim Th Appl 79:139–155
Hassouni A (1983) Sous-differentiels des fonctions quasi-convexes. Thése de 3ème cycle: Math Appliq Toulouse
Karamardian S (1976) Complementarityover cones with monotone and pseudomonotone maps. J Optim Th Appl 18:445–454
Karamardian S, Schaible S (1990) Seven kinds of monotone maps. J Optim Th Appl 66:37–46
Komlosi S (1995) Generalized monotonicity and generalized convexity. J Optim Th Appl 84:361–376
Luc DT (1993) Characterizations of quasiconvex functions. BullAustral Math Soc 48:393–405
Luc DT (1994) On generalized convex nonsmooth functions. Bull Austral Math Soc 49:139–149
Mitjuschin LG, Polterovich WM (1978) Criteria for monotonicity of demand functions. Ekonomika i Mat Metody 14:122–128 in Russian.
Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Acad. Press, New York
Penot JP (1995) Generalized convexity in the light of nonsmooth analysis. In: Duvier R, Michelot C (eds) Recent Developments In Optimization. Lecture Notes Economics and Math Systems. Springer, Berlin, pp 269–290
Penot JP (1998) Are generalized derivatives useful for generalized convex functions? In: Crouzeix JP, Martinez-Legaz JE, Volle M (eds) Generalized Convexity, Generalized Monotonicity: Recent Developments. Proc. 5th Internat. Symp. Generalized Convexity, Kluwer, Dordrecht, pp 3–60
Penot JP, Quang PH (1997) Generalized convexity of functions and generalized monotonicity of set-valued maps. J Optim Th Appl 92:343–356
Yao JC (1994) Multivalued variational inequalities with K-pseudomonotone operators. J Optim Th Appl 83:391–403
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Hadjisavvas, N., Schaible, S. (2008). Generalized Monotone Multivalued Maps . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_206
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_206
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering