Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generalized Monotone Multivalued Maps

GMMVM

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

The Subdifferential

The Monotone Case

The Quasimonotone Case

The Pseudomonotone Case

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aussel D (1998) Subdifferential properties of quasiconvex and pseudoconvex functions. J Optim Th Appl 97:29–45

    Article  MathSciNet  MATH  Google Scholar 

  2. Aussel D, Corvellec JN, Lassonde M (1995) Mean value property and subdifferential criteria for lower semicontinuous functions. Trans Amer Math Soc 347:4147–4161

    Article  MathSciNet  MATH  Google Scholar 

  3. Avriel M, Diewert WE, Schaible S, Zang I (1988) Generalized concavity. Plenum, New York

    MATH  Google Scholar 

  4. Correa R, Jofre A, Thibault L (1992) Characterization of lower semicontinuous convexfunctions. Proc Amer Math Soc 116:67–72

    Article  MathSciNet  MATH  Google Scholar 

  5. Daniilidis A, Hadjisavvas N (1999) Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J Optim Th Appl 102:525–536

    Article  MathSciNet  MATH  Google Scholar 

  6. Daniilidis A, Hadjisavvas N (1999) On the subdifferentials of quasiconvex and pseudoconvex functions and cyclic monotonicity. J Math Anal Appl 237:30–42

    Article  MathSciNet  MATH  Google Scholar 

  7. Ellaia R, Hassouni A (1991) Characterization of nonsmooth functions through their generalized gradients. Optim 22:401–416

    Article  MathSciNet  MATH  Google Scholar 

  8. Hadjisavvas N (2001) The use of subdifferentials for studying generalized convex functions. J Statist Managem Systems no. March

    Google Scholar 

  9. Hadjisavvas N, Schaible S (1993) On strong pseudomonotonicity and (semi)strict quasimonotonicity. J Optim Th Appl 79:139–155

    Article  MathSciNet  MATH  Google Scholar 

  10. Hassouni A (1983) Sous-differentiels des fonctions quasi-convexes. Thése de 3ème cycle: Math Appliq Toulouse

    Google Scholar 

  11. Karamardian S (1976) Complementarityover cones with monotone and pseudomonotone maps. J Optim Th Appl 18:445–454

    Article  MathSciNet  MATH  Google Scholar 

  12. Karamardian S, Schaible S (1990) Seven kinds of monotone maps. J Optim Th Appl 66:37–46

    Article  MathSciNet  MATH  Google Scholar 

  13. Komlosi S (1995) Generalized monotonicity and generalized convexity. J Optim Th Appl 84:361–376

    Article  MathSciNet  MATH  Google Scholar 

  14. Luc DT (1993) Characterizations of quasiconvex functions. BullAustral Math Soc 48:393–405

    Article  MathSciNet  MATH  Google Scholar 

  15. Luc DT (1994) On generalized convex nonsmooth functions. Bull Austral Math Soc 49:139–149

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitjuschin LG, Polterovich WM (1978) Criteria for monotonicity of demand functions. Ekonomika i Mat Metody 14:122–128 in Russian.

    Google Scholar 

  17. Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Acad. Press, New York

    MATH  Google Scholar 

  18. Penot JP (1995) Generalized convexity in the light of nonsmooth analysis. In: Duvier R, Michelot C (eds) Recent Developments In Optimization. Lecture Notes Economics and Math Systems. Springer, Berlin, pp 269–290

    Google Scholar 

  19. Penot JP (1998) Are generalized derivatives useful for generalized convex functions? In: Crouzeix JP, Martinez-Legaz JE, Volle M (eds) Generalized Convexity, Generalized Monotonicity: Recent Developments. Proc. 5th Internat. Symp. Generalized Convexity, Kluwer, Dordrecht, pp 3–60

    Google Scholar 

  20. Penot JP, Quang PH (1997) Generalized convexity of functions and generalized monotonicity of set-valued maps. J Optim Th Appl 92:343–356

    Article  MathSciNet  MATH  Google Scholar 

  21. Yao JC (1994) Multivalued variational inequalities with K-pseudomonotone operators. J Optim Th Appl 83:391–403

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hadjisavvas, N., Schaible, S. (2008). Generalized Monotone Multivalued Maps . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_206

Download citation

Publish with us

Policies and ethics