Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abelian Hidden Subgroup Problem

1995; Kitaev

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Generalization of Abelian stabilizer problem; Generalization of Simon's problem          

Problem Definition

The Abelian hidden subgroup problem is the problem of finding generators for a subgroup K of an Abelian group G, where this subgroup is defined implicitly by a function \( { f \colon G \rightarrow X } \), for some finite set X. In particular, f has the property that \( { f(v) = f(w) } \) if and only if the cosetsFootnote 1 \( { v + K } \) and \( { w + K } \) are equal. In other words, f is constant on the cosets of the subgroup K, and distinct on each coset.

It is assumed that the group G is finitely generated and that the elements of G and X have unique binary encodings (the binary assumption is not so important, but it is important to have unique encodings.) When using variables g and h (possibly with subscripts) multiplicative notation is used for the group operations. Variables x and y(possibly with subscripts) will denote integers with addition. The boldface...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assuming additive notation for the group operation here.

Recommended Reading

  1. Boneh, D., Lipton, R.: Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) In: Proceedings of 15th Annual International Cryptology Conference (CRYPTO'95), pp. 424–437, Santa Barbara, 27–31 August 1995

    Google Scholar 

  2. Brassard, G., Høyer, P.: An exact quantum polynomial-time algorithm for Simon's problem. In: Proc. of Fifth Israeli Symposium on Theory of Computing ans Systems (ISTCS'97), pp. 12–23 (1997) and in: Proceedings IEEE Computer Society, Ramat-Gan, 17–19 June 1997

    Chapter  Google Scholar 

  3. Cheung, K., Mosca, M.: Decomposing Finite Abelian Groups. Quantum Inf. Comp. 1(2), 26–32 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum Algorithms Revisited. Proc. Royal Soc. London A 454, 339–354 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Royal Soc. London A 400, 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. Royal Soc. London A 439, 553–558 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of the hidden subgroup problem is polynomial. Inf. Process. Lett. 91, 43–48 (2004)

    Article  MATH  Google Scholar 

  8. Grigoriev, D.: Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines. Theor. Comput. Sci. 180, 217–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Høyer, P.: Conjugated operators in quantum algorithms. Phys. Rev. A 59(5), 3280–3289 (1999)

    Article  MathSciNet  Google Scholar 

  10. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computation. Oxford University Press, Oxford (2007)

    Google Scholar 

  11. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem. quant-ph/9511026, http://arxiv.org/abs/quant-ph/9511026 (1995) and in: Electronic Colloquium on Computational Complexity (ECCC) 3, Report TR96-003,http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/ (1996)

  12. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 1191–1249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mosca, M., Ekert, A.: The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer. In: Proceedings 1st NASA International Conference on Quantum Computing & Quantum Communications. Lecture Notes in Computer Science, vol. 1509, pp. 174–188. Springer, London (1998)

    Google Scholar 

  14. Shor, P.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, Santa Fe, 20–22 November 1994

    Google Scholar 

  15. Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comp. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simon, D.: On the power of quantum computation. In: Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 116–123, Santa Fe, 20–22 November 1994

    Google Scholar 

  17. Simon, D.: On the Power of Quantum Computation. SIAM J. Comp. 26, 1474–1483 (1997)

    Article  MATH  Google Scholar 

  18. Vazirani, U.: Berkeley Lecture Notes. Fall 1997. Lecture 8. http://www.cs.berkeley.edu/~vazirani/qc.html (1997)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Mosca, M. (2008). Abelian Hidden Subgroup Problem. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_1

Download citation

Publish with us

Policies and ethics