Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolutionary Computation in Economics

  • Reference work entry
Encyclopedia of Machine Learning

Definition

Evolutionary computation (EC) in economics is an area of knowledge which involves the use of any of the EC techniques, also known as evolutionary algorithms (EAs), in order to approach the topics within the economic sciences. This area of knowledge is different from the Evolutionary Economics field which does not necessarily apply EC techniques to study economic problems. The use of EC in economics pursues different purposes mainly to overcome some of the limitations of the classical economic models and to relax some of the strong assumptions made in such models.

Motivation and Background

Evolutionary computation (EC) is a branch of Machine Learning which is inspired in many forms by the principle of evolution. EC techniques, among many other machine learning techniques, have proven to be quite flexible and powerful tools in many different fields and disciplines. Economics-affine fields are by no means the exception for this widespread use of these evolutionary inspired...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Agapie, A., & Agapie, A. (2001). Evolutionary computation for econometric modeling. Advanced Modeling and Optimization, 3, 1–5.

    MATH  Google Scholar 

  • Alexandrova-Kabadjova, B. (2008). Evolutionary learning of the optimal pricing strategy in an artificial payment card market, Studies in computational intelligence (Vol. 100). Berlin: Springer.

    Google Scholar 

  • Amin, M. (2002). Restructuring the electric enterprise: Simulating the evolution of the electric power industry with intelligent adaptive agents. In A. Faruqui, & K. Eakin, (Eds.), Market analysis and resource management (Chap. 3). Boston: Kluwer Publishers.

    Google Scholar 

  • Andreoni, J., & Miller, J. H. (1995). Auctions with artificial adaptive agents. Games and Economic Behavior, 10, 39–64.

    Article  MATH  Google Scholar 

  • Anthony, P., & Jennings, N. R. (2003). Developing a bidding agent for multiple heterogeneous auctions. ACM Transactions on Internet Technology, 3, 185–217.

    Article  Google Scholar 

  • Arifovic, J. (1994). Genetic algorithm learning and the cobweb model. Journal of Economic Dynamics and Control, 18, 3–28.

    Article  MATH  Google Scholar 

  • Arifovic, J. (1996). The behavior of the exchange rate in the genetic algorithm and experimental economics. Journal of Political Economy, 104, 510–541.

    Article  Google Scholar 

  • Arthur, W. B. (1991). Learning and adaptiver economic behavior. Designing economic agents that act like human agents: A behavioral approach to bounded rationality. American Economic Review, 81, 353–359.

    Google Scholar 

  • Arthur, W. B. (1994). Inductive reasoning and bounded rationality: The El Farol problem. American Economic Review, 84, 406–411.

    Google Scholar 

  • Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P. (1997). Asset pricing under endogenous expectations in an artificial stock market. In W. Brian Arthur, S. Durlauf, & D. Lane, (Eds.), The economy as an evolving complex system II. Menlo Park: Addison-Wesley.

    Google Scholar 

  • Axelrod, R. (1987). The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis (Ed.), Genetic algorithms and simulated annealing, Research notes in AI (Chap. 3, pp. 32–41). Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  • Axelrod, R. (2003). Advancing the art of simulation in the social sciences. Japanese Journal for Management Information System, Special Issue on Agent-Based Modeling, 12 (3).

    Google Scholar 

  • Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 1390–1396.

    Article  MathSciNet  Google Scholar 

  • Axelrod, R., & Tesfatsion, L. (2006). A guide for newcomers to agent-based modeling in the social sciences. In K. L. Judd, & L. Tesfatsion, (Eds.), Handbook of computational economics, Volume 2: Agent-based computational economics, Handbooks in economics (Appendix A, pp. 1647–1656). Amsterdam: North-Holland.

    Google Scholar 

  • Axtell, R. (2000). Why agents? on the varied motivations for agent computing in the social sciences. Working Paper 17, Center on Social and Economic Dynamics.

    Google Scholar 

  • Brenner, T. (2006). Agent learning representation – advice in modelling economic learning. In K. L. Judd, & L. Tesfatsion, (Eds.), Handbook of computational economics, Volume 2: Agent-based computational economics, Handbooks in economics (Chap. 18, pp. 895–948). Amsterdam: North-Holland.

    Google Scholar 

  • Bullard, J., Arifovic, J., & Duffy, J. (1995). Learning in a model of economic growth and development. Working Paper 1995-017A, Federal Reserve Bank Of St. Louis.

    Google Scholar 

  • Bullard, J., & Duffy, J. (1999). Using genetic algorithms to model the evolution of heterogeneous beliefs. Computational Economics, 13, 41–60.

    Article  MATH  Google Scholar 

  • Byde, A. (2003). Applying evolutionary game theory to auction mechanism design. In ACM conference on electronic commerce (pp. 192–193). New York: ACM.

    Google Scholar 

  • Chan, N. T., LeBaron, B., Lo, A. W., & Poggio, T. (2001). Agent-based models of financial markets: A comparison with experimental markets. MIT Sloan Working Paper 4195-01, Massachusetts Institute of Technology.

    Google Scholar 

  • Chen, S.-H. (2007). Editorial: Computationally intelligent agents in economics and finance. Information Science, 177(5), 1153–1168.

    Article  Google Scholar 

  • Chen, S.-H., & Ni, C. C. (2000). Simulating the ecology of oligopolistic competition with genetic algorithms. Knowledge Information Systems, 2(2), 285–309.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, S.-H., & Yeh, C.-H. (1996). Genetic programming learning in the cobweb model with speculators. In International computer symposium (ICS’96). Proceedings of international conference on artificial intelligence (pp. 39–46), National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.

    Google Scholar 

  • Cliff, D. (2003). Explorations in evolutionary design of online auction market mechanisms. Electronic Commerce Research and Applications, 2, 162–175.

    Article  Google Scholar 

  • Dawid, H. (1999). On the convergence of genetic learning in a double auction market. Journal of Economic Dynamics and Control, 23, 1545–1567.

    Article  MATH  MathSciNet  Google Scholar 

  • Duffy, J. (2006). Agent-based models and human subject experiments. In K. L. Judd, & L. Tesfatsion, (Eds.), Handbook of computational economics, Volume 2: Agent-based computational economics, Handbooks in economics (Chap. 19, pp. 949–1012). Amsterdam: North-Holland.

    Google Scholar 

  • Duffy, J., & Engle-Warnick, J. (2002). Using symbolic regression to infer strategies from experimental data. In S.-H. Chen (Ed.), Evolutionary computation in economics and finance (pp. 61–82). New York: Physica-Verlag.

    Google Scholar 

  • Edmonds, B. (1999). Modelling bounded rationality in agent-based simulations using the evolution of mental models. In T. Brenner (Ed.), Computational techniques for modelling learning in economics (pp. 305–332). Dordrecht: Kluwer.

    Google Scholar 

  • Greene, W. H. (2003). Econometric analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Heppenstall, A., Evans, A., & Birkin, M. (2006). Using hybrid agent-based systems to model spatially-influenced retail markets. Journal of Artificial Societies and Social Simulation, 9, 3.

    Google Scholar 

  • Izumi, K., & Ueda, K. (2001). Phase transition in a foreign exchange market-analysis based on an artificial market approach. IEEE Transactions of Evolutionary Computation, 5(5), 456–470.

    Article  Google Scholar 

  • Jin, N., & Tsang, E. P. K. (2006). Co-adaptive strategies for sequential bargaining problems with discount factors and outside options. In Proceedings of the IEEE congress on evolutionary computation (pp. 7913–7920). Washington, DC: IEEE Press.

    Google Scholar 

  • Klemperer, P. (2004). Auctions: Theory and practice. The Toulouse lectures in economics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Koza, J. (1992). A genetic approach to econometric modelling. In P. Bourgine, & B. Walliser, (Eds.), Economics and cognitive science (pp. 57–75). Oxford: Pergamon Press.

    Google Scholar 

  • Lucas, R. E. (1986). Adaptive behavior and economic theory. In R. M. Hogarth, & M. W. Reder, (Eds.), Rational choice: The contrast between economics and psychology (pp. 217–242). Chicago: University of Chicago Press.

    Google Scholar 

  • Marimon, R., McGrattan, E., & Sargent, T. J. (1990). Money as a medium of exchange in an economy with artificially intelligent agents. Journal of Economic Dynamics and Control, 14, 329–373.

    Article  MATH  MathSciNet  Google Scholar 

  • Martinez-Jaramillo, S., & Tsang, E. P. K. (2009). An heterogeneous, endogenous and coevolutionary gp-based financial market. IEEE Transactions on Evolutionary Computation, 13, 33–55.

    Article  Google Scholar 

  • Mochon, A., Quintana, D., Sez, Y., & Isasi, P. (2005). Analysis of ausubel auctions by means of evolutionary computation. In IEEE congress on evolutionary computation (CEC 2005) (pp. 2645–2652). Edinburgh, Scotland.

    Google Scholar 

  • Nash, J. (1950). The barganing problem. Econometrica, 18, 155–162.

    Article  MATH  MathSciNet  Google Scholar 

  • Östermark, R. (1999). Solving irregular econometric and mathematical optimization problems with a genetic hybrid algorithm. Computational Economics, 13(2), 103–115.

    Article  MATH  Google Scholar 

  • Riechmann, T. (2002). Genetic algorithm learning and economic evolution. Studies in fuzziness and soft computing (pp. 45–59). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Saez, Y., Quintana, D., Isasi, P., & Mochon, A. (2007). Effects of a rationing rule on the ausubel auction: A genetic algorithm implementation. Computational Intelligence, 23(2), 221–235.

    Article  MathSciNet  Google Scholar 

  • Simon, H. A. (1957). Models of man: Social and rational. New York: John Wiley.

    MATH  Google Scholar 

  • Maynard Smith, J. (1972). Game theory and the evolution of fighting (pp. 8–28). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Tesfatsion, L. (2006). Agent-based computational economics: A constructive approach to economic theory. In K. L. Judd & L. Tesfatsion, (Eds.), Handbook of computational economics, Volume 2: Agent-based computational economics, Handbooks in economics (Chap. 16, pp. 831–880). Amsterdam: North-Holland.

    Google Scholar 

  • Tsang, E. P. K. (2008). Computational intelligence determines effective rationality. International Journal of Automation and Computing, 5, 63–66.

    Article  Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Vriend, N. J. (1995). Self-organization of markets: An example of a computational approach. Computational Economics, 8, 205–231.

    Article  MATH  Google Scholar 

  • Witt, U. (2008). Evolutionary economics (2nd ed.). Basingstoke, UK: Palgrave Macmillan.

    Google Scholar 

  • Wooldridge, M. (2002). An Introduction to multiagent systems. Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Martínez-Jaramillo, S., Alexandrova-Kabadjova, B., García-Almanza, A.L., Centeno, T.P. (2011). Evolutionary Computation in Economics. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_273

Download citation

Publish with us

Policies and ethics