Nothing Special   »   [go: up one dir, main page]

Skip to main content

Definition

ILUPACK is the abbreviation for Incomplete LU factorization PACKage. It is a software library for the iterative solution of large sparse linear systems. It is written in FORTRAN 77 and C and available at http://ilupack.tu-bs.de. The package implements a multilevel incomplete factorization approach (multilevel ILU) based on a special permutation strategy called “inverse-based pivoting” combined with Krylov subspace iteration methods. Its main use consists of application problems such as linear systems arising from partial differential equations (PDEs). ILUPACK supports single and double precision arithmetic for real and complex numbers. Among the structured matrix classes that are supported by individual drivers are symmetric and/or Hermitian matrices that may or may not be positive definite and general square matrices. An interface to MATLAB (via MEX) is available. The main drivers can be called from C, C++, and FORTRAN.

Discussion

Introduction

Large sparse linear systems...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Aliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2008) Design, tuning and evaluation of parallel multilevel ILU preconditioners. In: Palma J, Amestoy P, Dayde M, Mattoso M, Lopes JC (eds) High performance computing for computational science – VECPAR 2008, Toulouse, France. Number 5336 in Lecture Notes in Computer Science, pp 314–327. Springer, Berlin/Heidelberg

    Google Scholar 

  2. Aliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2008) Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Technical report, Dpto. de Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (submitted for publication)

    Google Scholar 

  3. Aliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí  ES (2009) Evaluation of parallel sparse matrix partitioning software for parallel multilevel ILU preconditioning on shared-memory multiprocessors. In: Chapman B et al (eds) Parallel computing: from multicores and GPUs to petascale. Advances in parallel computing, vol 19. IOS Press, Amsterdam, pp 125–132

    Google Scholar 

  4. Amestoy P, Davis TA, Duff IS (1996) An approximate minimum degree ordering algorithm. SIAM J Matrix Anal Appl 17(4): 886–905

    Article  MATH  MathSciNet  Google Scholar 

  5. Bollhöfer M, Grote MJ, Schenk O (2009) Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM J Sci Comput 31(5):3781–3805

    Article  MATH  MathSciNet  Google Scholar 

  6. Bollhöfer M, Saad Y (2006) Multilevel preconditioners constructed from inverse–based ILUs. SIAM J Sci Comput 27(5):1627–1650

    Article  MATH  MathSciNet  Google Scholar 

  7. Duff IS, Koster J (1999) The design and use of algorithms for permuting large entries to the diagonal of sparse matrices. SIAM J Matrix Anal Appl 20(4):889–901

    Article  MATH  MathSciNet  Google Scholar 

  8. Duff IS, Pralet S (2005) Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J Matrix Anal Appl 27(2):313–340

    Article  MATH  MathSciNet  Google Scholar 

  9. Duff IS, Uçar B (Aug 2009) Combinatorial problems in solving linear systems. Technical Report TR/PA/09/60, CERFACS

    Google Scholar 

  10. Freund R, Nachtigal N (1995) Software for simplified Lanczos and QMR algorithms. Appl Numer Math 19(3):319–341

    Article  MATH  MathSciNet  Google Scholar 

  11. George A, Liu JW (1989) The evolution of the minimum degree ordering algorithm. SIAM Rev 31(1):1–19

    Article  MATH  MathSciNet  Google Scholar 

  12. GuptaA, George T (2010) Adaptive techniques for improving the performance of incomplete factorization preconditioning. SIAM J Sci Comput 32(1):84–110

    Article  MathSciNet  Google Scholar 

  13. Hénon P, Ramet P, Roman J (2008) On finding approximate supernodes for an efficient block-ILU(k) factorization. Parallel Comput 34(6–8):345–362

    Article  MathSciNet  Google Scholar 

  14. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  Google Scholar 

  15. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM Publications, Philadelphia, PA

    Book  MATH  Google Scholar 

  16. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MATH  MathSciNet  Google Scholar 

  17. Schenk O, Bollhöfer M, Römer RA (2008) Awarded SIGEST paper: on large scale diagonalization techniques for the Anderson model of localization. SIAM Rev 50:91–112

    Article  MATH  MathSciNet  Google Scholar 

  18. Simon HD (Jan 1985) User guide for ILUPACK: incomplete LU factorization and iterative methods. Technical Report ETA-LR-38, Boeing Computer Services

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bollhöfer, M., Aliaga, J.I., Martı́n, A.F., Quintana-Ortí, E.S. (2011). ILUPACK. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_513

Download citation

Publish with us

Policies and ethics