Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Review of Evolutionary Algorithms for Computing Functional Conformations of Protein Molecules

  • Protocol
  • First Online:
Computer-Aided Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1368 Accesses

Abstract

The ubiquitous presence of proteins in chemical pathways in the cell and their key role in many human disorders motivates a growing body of protein modeling studies to unravel the relationship between protein structure and function. The foundation of such studies is the realization that knowledge of the structures a protein accesses under physiological conditions is key to a detailed understanding of its biological function and the design of therapeutic compounds for the purpose of altering misfunction in aberrant variants of a protein.

Dry laboratory investigations promise a holistic treatment of the relationship between protein sequence, structure, and function. Significant efforts are made in the dry laboratory to map protein conformation spaces and underlying energy landscapes of proteins. The majority of such efforts employ well-studied computational templates, such as Molecular Dynamics and Monte Carlo. The focus of this review is on a third emerging template, stochastic optimization under the umbrella of evolutionary computation. Algorithms based on such a template, also known as evolutionary algorithms, are showing promise in addressing fundamental computational challenges in protein structure modeling and are opening up new avenues in protein modeling research. This review summarizes evolutionary algorithms for novice readers, while highlighting recent developments that showcase current, state-of-the-art capabilities for experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 1(33):D514–D517

    Google Scholar 

  2. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Copper DN (2014) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133(1):1–9

    Article  CAS  PubMed  Google Scholar 

  3. Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC et al (1999) Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 8(8):1451–1460

    Article  CAS  PubMed  Google Scholar 

  4. DiDonato M, Craig L, Huff ME, Thayer MM, Cardoso RM, Kassmann CJ et al (2003) ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 332(1):601–615

    Article  CAS  PubMed  Google Scholar 

  5. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    Article  CAS  PubMed  Google Scholar 

  6. Soto C (2008) Protein misfolding and neurodegeneration. JAMA Neurol 65(2):184–189

    Google Scholar 

  7. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    Article  CAS  Google Scholar 

  8. Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundstrm P, ZarrineAfsar A et al (2012) Structure of an intermediate state in protein folding and aggregation. Science 336(6079):362–366

    Article  CAS  PubMed  Google Scholar 

  9. Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R et al (2015) Allosteric effects of the oncogenic RasQ61L mutant on RafRBD. Structure 23(3):505–516

    Article  CAS  PubMed  Google Scholar 

  10. Berman HM, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980

    Article  CAS  PubMed  Google Scholar 

  11. Reardon S (2013) Large NIH, projects cut. Nature 503(7475):173–174

    Article  CAS  PubMed  Google Scholar 

  12. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230

    Article  CAS  PubMed  Google Scholar 

  13. Boehr DD, Wright PE (2008) How do proteins interact? Science 320(5882):1429–1430

    Article  CAS  PubMed  Google Scholar 

  14. Dill KA, Ozkan B, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y (2014) Interplay of ITASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 82(Suppl 2):175–187

    Article  CAS  PubMed  Google Scholar 

  17. Amaro RE, Bansai M (2014) Editorial overview: theory and simulation: tools for solving the insolvable. Curr Opin Struct Biol 25:4–5

    Article  CAS  Google Scholar 

  18. Clementi C (2008) Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struct Biol 18:10–15

    Article  CAS  PubMed  Google Scholar 

  19. Taketomi H, Ueda Y, Go N (1975) Studies on protein folding, unfolding and fluctuations by computer simulation: the effect of specific amino acid sequence represented by specific inter-unit interactions. Int J Pept Prot Res 7(6):445–459

    Article  CAS  Google Scholar 

  20. Hinds DA, Levitt M (1994) Exploring conformational space with a simple lattice model for protein structure. J Mol Biol 243(4):668–682

    Article  CAS  PubMed  Google Scholar 

  21. Kolinski A, Skolnick J (1994) Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Prot Struct Funct Genet 18(4):338–352

    Article  CAS  Google Scholar 

  22. Ishikawa K, Yue K, Dill KA (1999) Predicting the structures of 18 peptides using Geocore. Protein Sci 8(4):716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Unger R, Moult J (1993) Finding lowest free energy conformation of a protein is an NP-hard problem: proof and implications. Bull Math Biol 55(6):1183–1198

    Article  CAS  PubMed  Google Scholar 

  24. Hart WE, Istrail S (1997) Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. J Comp Biol 4(1):1–22

    Article  CAS  Google Scholar 

  25. Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M (1998) On the complexity of protein folding. J Comput Biol 5(3):423–465

    Article  CAS  PubMed  Google Scholar 

  26. Reva BA, Finkelstein AV, Sanner MF, Olson AJ (1996) Adjusting potential energy functions for lattice models of chain molecules. Prot Struct Funct Genet 25(3):379–388

    Article  CAS  Google Scholar 

  27. Park BH, Levitt M (1995) The complexity and accuracy of discrete state models of protein structure. J Mol Biol 249(2):493–507

    Article  CAS  PubMed  Google Scholar 

  28. Dotu I, Cebrian M, Van Hentenryck P, Clote P (2011) On lattice protein structure prediction revisited. IEEE Trans Comp Biol Bioinform 8(6):1620–1632

    Article  CAS  Google Scholar 

  29. Abayagan R, Totrov M, Kuznetsov D (1994) ICM a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506

    Article  Google Scholar 

  30. Zhang M, Kavraki LE (2002) A new method for fast and accurate derivation of molecular conformations. Chem Inf Comp Sci 42(1):64–70

    Article  CAS  Google Scholar 

  31. McLachlan AD (1972) A mathematical procedure for superimposing atomic coordinates of proteins. Acta Crystallogr A 26(6):656–657

    Article  Google Scholar 

  32. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  33. Onuchic JN, LutheySchulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  CAS  PubMed  Google Scholar 

  34. Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4(1):10–19

    Article  CAS  PubMed  Google Scholar 

  35. Onuchic JN, Wolynes PG (1997) Theory of protein folding. Curr Opin Struct Biol 14:70–75

    Article  CAS  Google Scholar 

  36. Li Z, Scheraga HA (1987) Monte Carlo minimization approach to the multiple minima problem in protein folding. Proc Natl Acad Sci U S A 84(19):6611–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verma A, Schug A, Lee KH, Wenzel W (2006) Basin hopping simulations for all-atom protein folding. J Chem Phys 124(4):044515

    Article  CAS  PubMed  Google Scholar 

  38. LindorffLarsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334(6055):517–520

    Article  CAS  Google Scholar 

  39. Vendruscolo M, Dobson CM (2011) Protein dynamics: Moore’s law in molecular biology. Curr Biol 21(2):R68–R70

    Article  CAS  PubMed  Google Scholar 

  40. Piana S, LindorffLarsen K, Shaw DE (2013) Atomic-level description of ubiquitin folding. Proc Natl Acad Sci U S A 110(15):5915–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stein EG, Rice LM, Bruenger AT (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson 124(1):154–164

    Article  CAS  PubMed  Google Scholar 

  42. Rice LM (2004) Bruenger AT.277290. Prot Struct Funct Bioinf 19(4):277–290

    Article  Google Scholar 

  43. Chen J, Im W, Brooks C (2005) Application of torsion angle molecular dynamics for efficient sampling of protein conformations. J Comput Chem 26(15):1565–1578

    Article  CAS  PubMed  Google Scholar 

  44. Unger R (2004) The genetic algorithm approach to protein structure prediction. Struct Bond 110:153–175

    Article  Google Scholar 

  45. De Jong KA (2006) Evolutionary computation: a unified approach. MIT Press, Boston, MA

    Google Scholar 

  46. Olson B, Shehu A (2012) Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface. Proteome Sci 10(10):S5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Olson B, Shehu A (2013) Rapid sampling of local minima in protein energy surface and effective reduction through a multi-objective filter. Proteome Sci 11(Suppl1):S12

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saleh S, Olson B, Shehu A (2013) A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction. BMC Struct Biol 13(Suppl1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Prentiss MC, Wales DJ, Wolynes PG (2008) Protein structure prediction using basin hopping. J Chem Phys 128(22):225106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wales DJ, Doye JPK (1997) Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101(28):5111–5116

    Article  CAS  Google Scholar 

  51. Nayeem A, Vila J, Scheraga HA (1991) A comparative study of the simulated-annealing and Monte Carlo with minimization approaches to the minimum energy structures of polypeptides: [Met]enkephalin. J Comput Chem 12(5):594–605

    Article  CAS  Google Scholar 

  52. Lourenco HR, Martin OC, Stutzle T, Glover F, Kochenberger G (eds) (2002) Iterated local search. Kluwer Academic Publishers, Norwell, MA

    Google Scholar 

  53. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235(3):983–1002

    Article  CAS  PubMed  Google Scholar 

  54. Mortenson PN, Evans DA, Wales DJ (2002) Energy landscapes of model polyalanines. J Chem Phys 117(3):1363–1376

    Article  CAS  Google Scholar 

  55. Iwamatsu M, Okabe Y (2004) Basin hopping with occasional jumping. Chem Phys Lett 399:396–400

    Article  CAS  Google Scholar 

  56. Olson B, Hashmi I, Molloy K, Shehu A (2012) Basin hopping as a general and versatile optimization framework for the characterization of biological macromolecules. Adv AI J 2012:674832

    Google Scholar 

  57. Bradley P, Misura KMS, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871

    Article  CAS  PubMed  Google Scholar 

  58. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  PubMed  Google Scholar 

  59. Brunette TJ, Brock O (2009) Guiding conformation space search with an all-atom energy potential. Prot Struct Funct Bioinf 73(4):958–972

    Article  CAS  Google Scholar 

  60. DeBartolo J, Colubri A, Jha AK, Fitzgerald JE, Freed KF, Sosnick TR (2009) Mimicking the folding pathway to improve homology-free protein structure prediction. Proc Natl Acad Sci U S A 106(10):3734–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shehu A, Olson B (2010) Guiding the search for native-like protein conformations with an ab-initio tree-based exploration. Int J Robot Res 29(8):1106–1127

    Article  Google Scholar 

  62. Simoncini D, Berenger F, Shrestha R, Zhang KYJ (2012) A probabilistic fragment-based protein structure prediction algorithm. PLoS One 7(7):e38799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Handl J, Knowles J, Vernon R, Baker D, Lovell SC (2011) The dual role of fragments in fragment-assembly methods for de novo protein structure prediction. Prot Struct Funct Bioinf 80(2):490–504

    Article  CAS  Google Scholar 

  64. Shmygelska A, Levitt M (2009) Generalized ensemble methods for de novo structure prediction. Proc Natl Acad Sci U S A 106(5):94305–95126

    Article  Google Scholar 

  65. Shehu A, Kavraki LE, Clementi C (2009) Multiscale characterization of protein conformational ensembles. Prot Struct Funct Bioinf 76(4):837–851

    Article  CAS  Google Scholar 

  66. Molloy K, Shehu A (2013) Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method. BMC Struct Biol 13(Suppl 1):S8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Han KF, Baker D (1996) Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc Natl Acad Sci U S A 93(12):5814–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. LeaverFay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  Google Scholar 

  69. Hoque M, Chetty M, Sattar A (2009) Genetic algorithm in ab initio protein structure prediction using low resolution model: a review. In: Biomedical data and applications, vol 224. Springer, Berlin, pp 317–342

    Chapter  Google Scholar 

  70. Hart WE, Krasnogor N, Smith JE (eds) (2004) Recent advances in memetic algorithms. Vol 166 of Studies in fuzziness and soft computing. Springer, Heidelberg

    Google Scholar 

  71. Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comp 8(2):99–110

    Article  Google Scholar 

  72. Ong YS, Krasnogor N, Ishibuchi H (2004) Special issue on memetic algorithms. IEEE Trans Syst Man Cybernet B 37(1):2–5

    Article  Google Scholar 

  73. Ong Y, Lim M, Neri F, Ishibuchi H (2004) Special issue on emerging trends in a soft computing: memetic algorithms. Soft Comp 13:739–740

    Article  Google Scholar 

  74. Lopes HS, Scapin MP (2005) An enhanced genetic algorithm for protein structure prediction using the 2D hydrophobic-polar model. In: Intl Conf on artificial evolution. Springer, Berlin, pp 238–246

    Google Scholar 

  75. Berenboym I, Avigal M (2008) Genetic algorithms with local search optimization for protein structure prediction problem. In: International conference on genetic evolutionary computation (GECCO). ACM, New York, NY, pp 1097–1098

    Google Scholar 

  76. Islam M (2009) Novel memetic algorithm for protein structure prediction. In: AI 2009: Advances in Artificial Intelligence. Springer, Berlin

    Google Scholar 

  77. Chira C, Horvath D, Dumitrescu D (2010) An evolutionary model based on hill-climbing search operators for protein structure prediction. In: Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 38–49

    Chapter  Google Scholar 

  78. Tsay J, Su S (2011) Ab initio protein structure prediction based on memetic algorithm and 3D FCC lattice model. In: International conference on bioinformatics and biomedicine (BIBM). IEEE, Washington, DC, pp 315–318

    Google Scholar 

  79. Su S, Lin C, Ting C (2011) An effective hybrid of hill climbing and genetic algorithm for 2D triangular protein structure prediction. Proteome Sci 9(Suppl 1):S19

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cooper L, Corne D, Crabbe M (2003) Use of a novel Hill-climbing genetic algorithm in protein folding simulations. Comput Biol Chem 27(6):575–580

    Article  CAS  PubMed  Google Scholar 

  81. Cotta C (2003) Protein structure prediction using evolutionary algorithms hybridized with backtracking. In: Artificial neural nets problem solving methods. Springer, Berlin, p 1044

    Google Scholar 

  82. Olson B, Jong KAD, Shehu A (2013) Off-lattice protein structure prediction with homologous crossover. In: Intl Conf Genet Evol Comput (GECCO). ACM, New York, NY, pp 287–294

    Google Scholar 

  83. Olson B (2013) Evolving local minima in the protein energy surface. PhD thesis, George Mason University, Fairfax, VA

    Google Scholar 

  84. AbualRub MS, AlBetar MA, Abdullah R, Khader AT (2012) A hybrid harmony search algorithm for ab initio protein tertiary structure prediction. In: Network modeling and analysis in health informatics and bioinformatics. Springer, Berlin, pp 1–17

    Google Scholar 

  85. Tantar AA, Melab N, Talbi E (2008) A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction. Soft Comp 12(12):1185–1198

    Article  Google Scholar 

  86. Goldstein M, Fredj E, Gerber R, Benny RB (2011) Anew hybrid algorithm for finding the lowest minima of potential surfaces: approach and application to peptides. J Comput Chem 32(9):1785–1800

    Article  CAS  PubMed  Google Scholar 

  87. Olson B, Shehu A. Populating local minima in the protein conformational space. In: IEEE Intl Conf on Bioinf and Biomed, Atlanta, GA, 2011, pp 114–117

    Google Scholar 

  88. Saleh S, Olson B, Shehu A. A population-based evolutionary algorithm for sampling minima in the protein energy surface. In: IEEE Intl Conf on Bioinf and Biomed Workshops (BIBMW), Philadelphia, PA, 2012, pp 64–71

    Google Scholar 

  89. Olson B, Shehu A. Efficient basin hopping in the protein energy surface. In: IEEE Intl Conf on Bioinf and Biomed, Philadelphia, PA, 2012, pp 119–124

    Google Scholar 

  90. Hoque T, Chetty M, Dooley LS (2006) A guided genetic algorithm for protein folding prediction using 3D hydrophobic-hydrophilic model. In: 2006 I.E. congress on evolutionary computation, CEC 2006. IEEE, Washington, DC, pp 2339–2346

    Google Scholar 

  91. Huang C, Yang X, He Z (2010) Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures. Comput Biol Chem 34(3):137–142

    Article  CAS  PubMed  Google Scholar 

  92. Bockenhauer HJ, Dayem UA, Kapsokalivas L, Steinhofel K (2008) A local move set for protein folding in triangular lattice models. In: LNCS: algorithms in bioinformatics, vol 11. Springer, Berlin, pp 369–381

    Chapter  Google Scholar 

  93. Lesh N, Mitzenmacher M, Whitesides S (2003) A complete and effective move set for simplified protein folding. In: Seventh annual Intl Conf on Res in Comp Mol Biol (RECOMB). ACM, New York, NY, pp 188–195

    Chapter  Google Scholar 

  94. Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD et al (1995) Principles of protein folding – a perspective from simple exact models. Protein Sci 4(4):561–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsay J, Su S (2013) An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets. Proteome Sci 11(Suppl 1):S19

    Article  PubMed  PubMed Central  Google Scholar 

  96. Krasnogor N, Smith J (2000) A memetic algorithm with self-adaptive local search: TSP as a case study. In: Intl Conf Genet Evol Comput (GECCO). ACM, New York, NY, pp 987–994

    Google Scholar 

  97. Krasnogor N, Blackburne B, Burke E, Hirst J (2002) Multi-meme algorithms for protein structure prediction. In: Parallel problem solving from nature (PPSN) VII, Lecture notes in computer science. Springer, Berlin, pp 769–778

    Chapter  Google Scholar 

  98. Smith JE (2003) Protein structure prediction with coevolving memetic algorithms. In: Congress on evolutionary computation (CEC), vol 4. IEEE, Washington, DC, pp 2346–2353

    Google Scholar 

  99. Smith JE (2005) The coevolution of memetic algorithms for protein structure prediction. In: Recent advances in memetic algorithms. Springer, Berlin, pp 105–128

    Chapter  Google Scholar 

  100. Fogel DB (2005) Evolutionary computation: toward a new philosophy of machine intelligence, 3rd edn. Wiley IEEE Press, New York, NY

    Book  Google Scholar 

  101. Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Intl Conf Genet algorithms. ACM, New York, NY, pp 42–50

    Google Scholar 

  102. Deb K, Goldberg DE (1994) Simple subpopulation schemes. In: Evol Prog Conf. ACM, New York, NY, pp 296–397

    Google Scholar 

  103. Corne DW, Fogel GB (2004) An introduction to bioinformatics for computer scientists. In: Fogel GB, Corne DW (eds) Evolutionary computation in bioinformatics. Elsevier, India, pp 3–18

    Google Scholar 

  104. Bazzoli A, Tettamanzi A (2004) A memetic algorithm for protein structure prediction in a 3Dlattice HP model. In: Applications of evolutionary computing, vol 3005. Springer, Berlin, pp 1–10

    Chapter  Google Scholar 

  105. Chira C (2011) A hybrid evolutionary approach to protein structure prediction with lattice models. In: IEEE congress on evolutionary computation. IEEE, Washington, DC, pp 2300–2306

    Google Scholar 

  106. Chira C, Horvath D, Dumitrescu D (2011) Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction. BioData Min 4(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hoque MT, Chetty M, Lewis A, Sattar A (2011) Twin removal in genetic algorithms for protein structure prediction using low-resolution model. IEEE Trans Comp Biol Bioinf 8(1):234–245

    Article  Google Scholar 

  108. De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. University of Michigan, Ann Arbor, MI

    Google Scholar 

  109. Clausen R, Shehu A. A multiscale hybrid evolutionary algorithm to obtain sample-based representations of multi-basin protein energy landscapes. In: ACM Conf Bioinf and Comp Biol (BCB), Newport Beach, CA, 2014, pp 269–278

    Google Scholar 

  110. Deb K, Agrawal S (1999) Niched-penalty approach for constraint handling in genetic algorithms. In: Artificial neural nets and genetic algorithms. Springer, Berlin, pp 235–243

    Chapter  Google Scholar 

  111. Swakkhar S, Hakim Newton MA, Pham DN, Sattar A (2012) Memory-based local search for simplified protein structure prediction. In: ACM conference on bioinformatics, computational biology and biomedicine (ACMBCB). ACM, New York, NY, pp 1–8

    Google Scholar 

  112. Liu J, Sun Y, Li G, Song B, Huang W (2013) Heuristic-based tabu search algorithm for folding two-dimensional AB off-lattice model proteins. Comput Biol Chem 47:142–148

    Article  CAS  PubMed  Google Scholar 

  113. Zhou C, Hou C, Zhang Q, Wei X (2013) Enhanced hybrid search algorithm for protein structure prediction using the 3DHP lattice model. J Mol Model 19(9):3883–3891

    Article  CAS  PubMed  Google Scholar 

  114. Zhang X, Wang T, Luo H, Yang JY, Deng Y, Tang J et al (2010) 3D Protein structure prediction with genetic tabu search algorithm. BMC Syst Biol 4(Suppl 1):S6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zhou C, Hou C, Wei X, Zhang Q (2014) Improved hybrid optimization algorithm for 3D protein structure prediction. J Mol Model 20(7):2289–2300

    Article  PubMed  CAS  Google Scholar 

  116. Becerra D, Sandoval A, Restrepo-Montoya D, Nino LF (2010) A parallel multi-objective ab initio approach for protein structure prediction. In: Intl Conf on bioinformatics and biomedicine (BIBM). IEEE, Washington, DC, pp 137–141

    Google Scholar 

  117. Cutello V, Narzisi G, Nicosia G (2006) A multi-objective evolutionary approach to the protein structure prediction problem. J R Soc Interface 3(6):139–151

    Article  CAS  PubMed  Google Scholar 

  118. Narzisi G, Nicosia G, Stracquadanio G (2010) Robust bioactive peptide prediction using multi-objective optimization. In: 2010 International conference on biosciences. IEEE, Washington, DC, pp 44–50

    Chapter  Google Scholar 

  119. Handl J, Lovell S, Knowles J (2008) Investigations into the effect of multiobjectivization in protein structure prediction. In: Parallel problem solving from nature – PPSN X. Springer, Berlin, pp 702–711

    Chapter  Google Scholar 

  120. Garza-Fabre M, Rodriguez-Tello E, Toscano-Pulido G (2012) Multi-objectivizing the HP model for protein structure prediction. In: Evolutionary computation in combinatorial optimization. Springer, Berlin, pp 182–193

    Chapter  Google Scholar 

  121. Garza-Fabre M, Toscano-Pulido G, Rodriguez-Tello E (2012) Locality-based multi-objectivization for the HP model of protein structure prediction. In: International conference on genetic evolutionary computation (GECCO). ACM, New York, NY, pp 473–480

    Google Scholar 

  122. Day RO, Zydallis JB, Lamont GB, Pachter R (2002) Solving the protein structure prediction problem through a multi-objective genetic algorithm. Nanotechnology 2:32–35

    Google Scholar 

  123. Day RO (2002) A multiobjective approach applied to the protein structure prediction problem. MS thesis, Air Force Institute of Technology, March 2002. Sponsor: AFRL/Material Directorate

    Google Scholar 

  124. Calvo JC, Ortega J (2009) Parallel protein structure prediction by multi-objective optimization. In: Euromicro Intl Conf on parallel, distributed and network-based processing. IEEE, Washington, DC, pp 268–275

    Google Scholar 

  125. Calvo JC, Ortega J, Anguita M (2011) PITAGORASPSP: including domain knowledge in a multi-objective approach for protein structure prediction. Neurocomputing 74(16):2675–2682

    Article  Google Scholar 

  126. Calvo JC, Ortega J, Anguita M (2011) Comparison of parallel multi-objective approaches to protein structure prediction. In: Supercomputing. Springer, Berlin, pp 253–260

    Google Scholar 

  127. Cutello V, Narzisi G, Nicosia G (2005) A class of pareto archived evolution strategy algorithms using immune inspired operators for ab initio protein structure prediction. In: Applications of evolutionary computing. Springer, New York, NY, pp 54–63

    Chapter  Google Scholar 

  128. Olson B, Shehu A. Multi-objective stochastic search for sampling local minima in the protein energy surface. In: ACM Conf on Bioinf and Comp Biol (BCB), Washington, DC, 2013, pp 430–439

    Google Scholar 

  129. Olson B, Shehu A. Multi-objective optimization techniques for conformational sampling in template-free protein structure prediction. In: Intl Conf on Bioinf and Comp Biol (BICoB), Las Vegas, NV, 2014

    Google Scholar 

  130. Clausen R, Shehu A (in press) A data-driven evolutionary algorithm for mapping multi-basin protein energy landscapes. J Comput Biol

    Google Scholar 

  131. Clausen R, Ma B, Nussinov R, Shehu A (in press) Mapping the conformation space of wildtype and mutant H-Ras with a memetic, cellular, and multiscale evolutionary algorithm. PLoS Comput Biol

    Google Scholar 

  132. Clausen R, Sapin E, De Jong KA, Shehu A (2015) Evolution strategies for exploring protein energy landscapes. In: International conference on genetic evolutionary computation (GECCO). ACM, New York, NY

    Google Scholar 

  133. Ong YS, Lim M, Wong K (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybernet B 36(1):2–5

    Google Scholar 

  134. Kamath U, Kaers J, Shehu A, De Jong KA (2012) A spatial EA framework for parallelizing machine learning methods. In: Coello C, Cutello V, Deb K, Forrest S, Nicosia G, Pavone M (eds) Parallel problem solving from nature PPSN XII, vol 7491, Lecture notes in computer science. Springer, Berlin, pp 206–215

    Chapter  Google Scholar 

  135. Sapin E, Clausen R, De Jong KA, Shehu A (2015) Mapping multiple minima in protein energy landscapes with evolutionary algorithms. In: International conference on genetic evolutionary computation (GECCO). ACM, New York, NY

    Google Scholar 

  136. Humphrey W, Dalke A, Schulten K (1996) VMD Visual molecular dynamics. J Mol Graph Model 14(1):33–38, http://www.ks.uiuc.edu/Research/vmd/

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Funding for this work is provided in part by the National Science Foundation (Grant No. 1421001 and CAREER Award No. 1144106) and the Thomas F. and Kate Miller Jeffress Memorial Trust Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarda Shehu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shehu, A. (2015). A Review of Evolutionary Algorithms for Computing Functional Conformations of Protein Molecules. In: Zhang, W. (eds) Computer-Aided Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_47

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_47

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3519-2

  • Online ISBN: 978-1-4939-3521-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics