Nothing Special   »   [go: up one dir, main page]

Skip to main content

Principles of high-level net theory

  • I Basic Classes
  • Chapter
  • First Online:
Lectures on Petri Nets I: Basic Models (ACPN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1491))

Included in the following conference series:

Abstract

The paper gives an introduction to fundamentals and recent trends in the theory of high-level nets. High-level nets are first formally derived from low-level nets by means of a quotient construction. Based on a linear-algebraic representations, we develop an invariant calculus that essentially corresponds to the algebraic core of the well-known coloured nets. We demonstrate that the modelling power of high-level nets stems from the use of expressive symbolic annotation languages, where as a typical model we consider predicate-transition nets, both concrete models and net-schemes. As examples of specific high-level analysis-tools we discuss symbolic place-invariants and reachability-trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Ajmon Marsan et al. Modelling with Generalized Stochastic Petri Nets. Wiley,1995.

    Google Scholar 

  2. E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, E. Pelz. A class of composable high level Petri Nets. In Application and Theory of Petri Nets 1995, vol. 935 of LNCS, pp. 103–120. Springer-Verlag, 1995.

    Google Scholar 

  3. R. Brgan, D. Poitrenaud. An efficient algorithm for the computation of stubborn sets of well formed Petri nets. In Application and Theory of Petri Nets 1995, vol. 935 of LNCS, pp. 121–140. Springer-Verlag, 1995.

    Google Scholar 

  4. G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad. On well formed colored Petri nets and their symbolic reachability graph. In [17], pp. 373–296.

    Google Scholar 

  5. S. A. Christensen, N. Hansen. Coloured Petri nets extended with place capacities, test arcs and inhibitor arcs. In Application and Theory of Petri Nets 1993, vol. 691 of LNCS, pp. 186–205. Springer-Verlag,1993.

    Google Scholar 

  6. C. Chang and H. Keisler. Model Theory. North Holland, 1973.

    Google Scholar 

  7. P Cohn. Universal Algebra. D. Reidel Publishing Company, 1985.

    Google Scholar 

  8. H. Genrich. Equivalence transformations of PTT-nets. In Advances in Petri Nets 1989, vol. 424 of LNCS, pp. 179–208. Springer-Verlag, 1990.

    Google Scholar 

  9. H. Genrich, K. Lautenbach. System modelling with high-level Petri nets. Theoretical Comput. Sci., 13:109–136, 1981.

    Google Scholar 

  10. H. J. Genrich. Predicate/transition nets. In Advances in Petri Nets 1986, part I, vol. 254 of LNCS, pp. 207–247. Springer-Verlag, 1987.

    Google Scholar 

  11. S. Haddad, J. Ilié, M. Taghelit, B. Zouari Symbolic reachability graph and partial symmetries. In Application and Theory of Petri Nets 1995, vol. 935 of LNCS, pp. 238–257. Springer-Verlag,1995.

    Google Scholar 

  12. P. Huber, A. Jensen, L. Jensen, K. Jensen. Reachability trees for high-level Petri nets. Theoretical Comput. Sci., 45:261–292, 1986.

    Google Scholar 

  13. K. Jensen. Coloured Petri nets and the invariant-method. Theoretical Comput. Sci., 14:317–336, 1981.

    Google Scholar 

  14. K. Jensen. Coloured Petri nets: A high level language for system design and analysis. In Advances in Petri Nets 1990, vol. 483 of LNCS, pp. 342–416. Springer-Verlag, 1990.

    Google Scholar 

  15. K. Jensen. Coloured Petri Nets, vol. 1. Springer-Verlag, 1992.

    Google Scholar 

  16. K. Jensen. Coloured Petri Nets, vol. 2. Springer-Verlag, 1995.

    Google Scholar 

  17. K. Jensen, G. Rozenberg (eds.) High-level Petri Nets. Springer-Verlag, 1991.

    Google Scholar 

  18. G. Lakos, S. Christensen. A general systematic approach to arc extensions for coloured Petri nets. In Application and Theory of Petri Nets 1994, vol. 815 of LNCS, pp. 338–357. Springer-Verlag, 1994.

    Google Scholar 

  19. K. Lautenbach, A. Pagnoni. Invariance and duality in predicateltransition nets and in coloured nets, Arbeitspapiere der GMD 132, 1985

    Google Scholar 

  20. M. Lindqvist. Parameterized Reachability for PredicatelTransition Nets, vol. 54 of Acta Polytechnica Scandinavica, Mathematics and Computer Science. Helsinki, 1989.

    Google Scholar 

  21. M. Lindqvist. Parameterized reachability for predicate/transition nets, In Advances in Petri Nets, vol. 674 of LNCS, pp. 321–324. Springer-Verlag, 1993.

    Google Scholar 

  22. W. Reisig. Petri-Nets. Springer-Verlag, 1985.

    Google Scholar 

  23. W. Reisig. Petri nets and algebraic specifications. Theoretical Comput. Sci., 80:1–34, 1991.

    Google Scholar 

  24. W. Reisig, J. Vautherin. An algebraic approach to high level Petri nets. In Proc. 8th Workshop on Applications and Theory of Petri Nets, pp. 51–72, Zaragoza (Spain), 1987.

    Google Scholar 

  25. G. Rozenberg, P.S. Thiagarajan. Petri nets: Basic notions, structure, behaviour. In Current Trends in Concurrency, vol. 224 of LNCS, pp. 585–668. Springer-Verlag, 1986.

    Google Scholar 

  26. K. Schmidt. Parameterized reachability trees for algebraic Petri nets. In Application and Theory of Petri Nets 1995, vol. 935 of LNCS, pp. 392–411. Springer-Verlag, 1995.

    Google Scholar 

  27. E. Smith. On net systems generated by process foldings. In Advances in Petri Nets 1991, vol. 524 of LNCS, pp. 253–276. Springer-Verlag, 1991.

    Google Scholar 

  28. E. Smith. A primer on high-level Petri-net theory. In C. Fernandez et. al., editors, Advanced Course on Petri Nets, pp. 114–140. Editorial de la Universidad de Santiago de Chile, 1996.

    Google Scholar 

  29. E. Smith, W. Reisig. The semantics of a net is a net — an exercise in general net theory. In K. Voss, H. Genrich, and G. Rozenberg, editors, Concurrency and Nets, Advances in Petri Nets, pp. 461–480. Springer-Verlag, 1987.

    Google Scholar 

  30. V. Sperschneider, G. Antoniou. Logic: A Foundation for Computer Science. Addison-Wesley, 1991.

    Google Scholar 

  31. A. Valmari. Stubborn sets for coloured Petri nets. In Proc. 12th Int. Conf on Appl. and Theory of Petri Nets 1991, pp. 102–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Reisig Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, E. (1998). Principles of high-level net theory. In: Reisig, W., Rozenberg, G. (eds) Lectures on Petri Nets I: Basic Models. ACPN 1996. Lecture Notes in Computer Science, vol 1491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-65306-6_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-65306-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65306-6

  • Online ISBN: 978-3-540-49442-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics