Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Fayyad, U.M., & Irani, K.B. (1993). Multi-interval discretization of continuous-value attributes for classification learning. In Proc. 13th International Joint Conference on Artificial Intelligence, pp. 1022–1027. San Francisco: Morgan Kaufmann.
Ho, K.M., & Scott, P.D. (1997a). Zeta: A global method for discretization of continuous variables. In KDD97: 3rd International Conference of Knowledge Discovery and Data Mining, pp. 191–194, Newport Beach, CA.
Ho, K.M., & Scott, P.D. (1997b). An Efficient Global Discretization Method. Technical Report CSM-296, Department of Computer Science, University of Essex, England.
Kohavi, R., John, G., Long, R., Manley, D. & Pfleger, K. (1994), MLC++: A machine learning library in C++. In Tools with Artificial Intelligence, IEEE Computer Society Press, pp. 740–743.
Quinlan, J.R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research 4 pp. 77–90.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ho, K.M., Scott, P.D. (1998). An efficient global discretization method. In: Wu, X., Kotagiri, R., Korb, K.B. (eds) Research and Development in Knowledge Discovery and Data Mining. PAKDD 1998. Lecture Notes in Computer Science, vol 1394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64383-4_35
Download citation
DOI: https://doi.org/10.1007/3-540-64383-4_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64383-8
Online ISBN: 978-3-540-69768-8
eBook Packages: Springer Book Archive