Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel and distributed evolutionary computation with MANIFOLD

  • Theory
  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1277))

Included in the following conference series:

Abstract

In this paper, we apply a competitive coevolutionary approach using loosely coupled genetic algorithms to a distributed optimization of the Rosenbrock's function. The computational scheme is a coevolutionary system of agents with only local interaction among them, without any central synchronization. We use a recently developed coordination language called Manifold to implement our distributed optimization algorithm. We show that the distributed optimization algorithm implemented using Manifold outperforms the sequential optimization algorithm based on a standard genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Arbab, I. Herman and P. Spilling, An overview of manifold and its implementation. Concurrency: Practice and Experience, 5(1):23–70, Feb. 1993.

    Google Scholar 

  2. F. Arbab, The IWIM model for coordination of concurrent activities, in Coordination Languages and Models, P. Ciancarini and C. Hankin, Eds., LNCS 1061, Springer-Verlag, pp. 34–56, April 1996.

    Google Scholar 

  3. F. Arbab, I. Herman and E.P.M.B. Rutten, “The skeleton of a computing farm in manifold”, in H. El-Rewini, T. Lewis, and B.D. Schriver (eds.), Proc. of the 26th Annual Hawaii Int. Conf. on System Sciences, volume II, p. 347–356, Los Alamitos, California, 1993 IEEE Computer Society Press

    Google Scholar 

  4. F. Arbab, Coordination of massively concurrent activities, Tech. Report CSR9565, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, Nov. 1995

    Google Scholar 

  5. H. Chen and N. S. Flann, Parallel Simulated Annealing and Genetic Algorithms: a Space of Hybrid Methods, in Parallel Problem Solving from Nature — PPSN III, Y. Davidor, H.-P. Schwefel and R. Männer (eds.), LNCS 866, Springer-Verlag, 1994

    Google Scholar 

  6. D. Gelernter and N. Carriero. Coordination languages and their significance. Communications of the ACM, 35(2):97–107, February 1992.

    Google Scholar 

  7. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading. MA, 1989

    Google Scholar 

  8. F. Hoffmeister and T. Back, Genetic Algorithms and Evolution Strategies: Similarities and Differences, Tech. Report No. SYS-192, University of Dortmund, 1992

    Google Scholar 

  9. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1996

    Google Scholar 

  10. A. Ostermeier, A. Gawelczyk and N. Hansen, Step-Size Adaptation Based on NonLocal Use of Selection Information, in Parallel Problem Solving from Nature — PPSN III, Y. Davidor, H.-P. Schwefel and R. Männer (eds.), LNCS 866, Springer-Verlag, 1994

    Google Scholar 

  11. M. A. Potter and K. A. De Jong, A Cooperative Coevolutionary Approach to Function Optimization, in Parallel Problem Solving from Nature-PPSN III, Y. Davidor, H.-P. Schwefel and R. Männer (eds.), LNCS 866, Springer-Verlag, 1994

    Google Scholar 

  12. D. Schlierkamp-Vosen and H. Muhlenbein, Strategy Adaptation by Competing Subpopulation, in Parallel Problem Solving from Nature — PPSN III, Y. Davidor, H.-P. Schwefel and R. Männer (eds.), LNCS 866, Springer-Verlag, 1994

    Google Scholar 

  13. F. Seredynski, Loosely Coupled Distributed Genetic Algorithms, in Parallel Problem Solving from Nature — PPSN III, Y. Davidor, H.-P. Schwefel and R. Männer (eds.), LNCS 866, Springer-Verlag, 1994

    Google Scholar 

  14. Franciszek Seredynski, Pascal Bouvry, and Farhad Arbab. Distributed evolutionary optimization in manifold: the rosenbrock's function case study, In International Conference on Information Sciences (JCIS'97), pages 73–76, Duke University (USA), March 1997.

    Google Scholar 

  15. F. Seredynski, Coevolutionary Game Theoretic Multi-Agent Systems, in Foundations of Intelligent Systems, Z. W. Ras and M. Michalewicz (eds.), LNAI 1079, Springer, 1996

    Google Scholar 

  16. H.-P. Schwefel, Evolution and Optimum Seeking, John Wiley, Chichester, UK, 1995

    Google Scholar 

  17. M. L. Tsetlin, Automaton Theory and Modelling of Biological Systems. Academic Press. N.Y., 1973

    Google Scholar 

  18. W. I. Warschawski, Kollektives Verhalten von Automaten, Akademie-Verlag-Berlin, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor Malyshkin

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seredynski, F., Bouvry, P., Arbab, F. (1997). Parallel and distributed evolutionary computation with MANIFOLD. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 1997. Lecture Notes in Computer Science, vol 1277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63371-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-63371-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63371-6

  • Online ISBN: 978-3-540-69525-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics