Abstract
We present a unified treatment of the hierarchy defined by Klaus Wagner for ω-rational sets and also introduced in the more general framework of descriptive set theory by William W. Wadge. We show that this hierarchy can be defined by syntactic invariants, using the concept of an ω-semigroup.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1994.
Rana Barua. The Hausdorff-Kuratowski hierarchy of ω-regular languages and a hierarchy of Muller automata. Theoretical Computer Science, 96:345–360, 1992.
Nicolas Bedon. Automata, semigroups and recognizability of words on ordinals. IGM report 96-5, to appear in International Journal of Algebra and Computation.
Olivier Carton. Mots infinis, ω-semigroupes et Topologie. Thèse, Université Paris 7, 1993. Report LITP-TH 93-08.
Olivier Carton and Dominique Perrin. The Wagner hierarchy of ω-rational sets. To appear in International journal of algebra and computation.
Olivier Carton and Dominique Perrin. Chains and superchains in ω-semigroups. In Jorge Almeida, Grancinda Gomes, and Pedro Silva, editors, Semigroups, Automata and Languages, pages 17–28. World Scientific, 1994.
Olivier Carton and Dominique Perrin. Chains and superchains for ω-rational sets, automata and semigroups. International journal of algebra and computation, 1997. to appear.
John M. Howie. Fundamentals of Semigroup Theory. Oxford University Press, 1995.
Micheal Kaminski. A classification of ω-regular languages. Theoretical Computer Science, 36:217–229, 1985.
Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate texts in mathematics. 1995.
Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. Structural complexity of ω-languages. In STACS '95, volume 900 of Lecture Notes in Computer Science, pages 143–156, Berlin, 1995. Springer-Verlag.
Lawrence H. Landweber. Decision problems for ω-automata. Mathematical Systems Theory, 3:376–384, 1969.
Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995.
Alain Louveau. Some results in the Wadge hierarchy of Borel sets. In A.S. Kechris et al., editor, Cabal Seminar 79-81, volume 1019 of Lecture Notes in Math., pages 28–55. Springer-Verlag, 1981.
Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Principles of Distributed Computing, pages 377–408, 1990.
Dominique Perrin and Jean-Eric Pin. Infinite words. Version 1.4, Report LITP 97.04 (http://litp.ibp.fr/∼jep/Resumes/MotsInfinis.html).
Dominique Perrin and Jean-Eric Pin. Semigroups and automata on infinite words. In J. Fountain and V. A. R. Gould, editors, NATO Advanced Study Institute Semi-groups, Formal Languages and Groups, pages 49–72. Kluwer academic publishers, 1995.
Jean-Eric Pin. A variety theorem without complementation. Russian Mathematics (Iz. VUZ), 39:80–90, 1995.
Pierre Simonnet. Automates et Théorie Descriptive. Thèse, Université Paris 7, 1992.
Ludwig Staiger and Klaus Wagner. Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarb. Kybernet., 10:379–392, 1974.
Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 4. Eisevier, 1990.
Klaus Wagner. On ω-regular sets. Information and Control, 43:123–177, 1979.
Thomas Wilke. An Eilenberg theorem for ∞-languages. In ICALP '91, volume 510 of Lecture Notes in Computer Science, pages 588–599, Berlin, 1991. Springer-Verlag.
Thomas Wilke. An algebraic theory for regular languages of finite and infinite words. Int. J. Alg. Comput., 3(4):447–489, 1993.
Thomas Wilke and Haiseung Yoo. Computing the Rabin index of a regular language of infinite words. To appear in International Journal of Algebra and Computation, 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carton, O., Perrin, D. (1997). The Wadge-Wagner hierarchy of ω-rational sets. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds) Automata, Languages and Programming. ICALP 1997. Lecture Notes in Computer Science, vol 1256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63165-8_162
Download citation
DOI: https://doi.org/10.1007/3-540-63165-8_162
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63165-1
Online ISBN: 978-3-540-69194-5
eBook Packages: Springer Book Archive