Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decision value oriented decomposition of data tables

  • Communications Session 6B Learning and Discovery Systems
  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1325))

Included in the following conference series:

  • 107 Accesses

Abstract

The framework for decision value oriented decomposition of data tables is stated with examples of its applications to partially generalized reasoning. Operation of synthesis of information is introduced for distributed decision tables. Theoretical foundations are built on the basis of the main factors of quality of reasoning, by referring to rough set, Dempster-Shafer and statistical theories.

This paper was supported by the State Committee for Scientific Research grant, KBN 8T11C01011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dempster A.P., Upper and lower probabilities induced from a multivalued mapping; Annals of Mathematical Statistics, 38, pp.325–339, 1967.

    Google Scholar 

  2. Nguyen S.H., Nguyen H.S., Skowron A., Searching for Features defined by Hyperplanes in Proceedings of the Ninth International Symposium on Methodologies for Information Systems ISMIS'96, Z.W. Rag, M. Michalewicz (eds.), June, Zakopane, Poland; Lecture Notes in AI 1079, Berlin, Springer Verlag, pp.366–375, 1996.

    Google Scholar 

  3. Nguyen S.H., Nguyen T.T., Polkowski L., Skowron A., Synak P., Wróblewski J., Decision Rules for Large Data Tables in Proceedings of Symposium on Modelling, Analysis and Simulation vol 1, Computational Engineering in Systems Applications CESA'96, July 9–12, Lille, France, pp.942–947, 1996.

    Google Scholar 

  4. Nguyen S.H., Polkowski L., Skowron A., Synak P., Wróblewski J., Searching for Approximate Description of Decision Classes in Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery RSFD'96, November 6–8, Tokyo, Japan; the University of Tokyo, pp. 153–161, 1996.

    Google Scholar 

  5. Pawlak Z., Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht, 1991.

    Google Scholar 

  6. Pawlak Z., Skowron A., Rough Membership Functions; Advances in the Dempster-Shafer Theory of Evidence, Yager R.R., Fedrizzi M., Kacprzyk J.(eds.), John Wiley & Sons, New York, pp.251–271, 1994.

    Google Scholar 

  7. Payne J.W., Bettman J.R., Johnson E.J., The Adaptive Decision Maker, Cambridge University Press, 1993.

    Google Scholar 

  8. Polkowski L., Skowron A., Rough mereology: a new paradigm for approximate reasoning in International Journal of Approximate Reasoning, in print.

    Google Scholar 

  9. Shafer G., A Mathematical Theory of Evidence, Princeton University Press, 1976.

    Google Scholar 

  10. Skowron A., Synthesis of Adaptive Decision Systems from Experimental Data; Proceedings of the Fifth Scandinavian Conference on Artificial Intelligence SCAI-95, Aamodt A., Komorowski J.(eds.), Amsterdam, IOS Press, pp.220–238, 1995.

    Google Scholar 

  11. Skowron A., Grzymala-Busse J., From Rough Set Theory to Evidence Theory in Advances in the Dempster-Shafer Theory of Evidence, Yager R.R., Fedrizzi M., Kacprzyk J.(eds.), John Wiley & Sons, New York, pp.193–236, 1994.

    Google Scholar 

  12. Skowron A., Rauszer C., The Discernibility Matrices and Functions in Information Systems in Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, Slowinski R.(ed.), Kluwer, Dordrecht, pp.331–362, 1992.

    Google Scholar 

  13. Ślezak D., Approximate Reducts in Decision Tables; Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 96, Granada, July 1–5, Universidad de Granada, pp.1159–1164, 1996.

    Google Scholar 

  14. Vapnik V., Estimation of Dependencies Based on Empirical Data, Springer Series in Statistics, Springer-Verlag, 1982.

    Google Scholar 

  15. Wasserman L.A., Belief Functions and Statistical Inference; The Canadian Journal of Statistics Vol.18, No.3, pp.183–196, 1990.

    Google Scholar 

  16. Wróblewski J., Finding minimal reducts using genetic algorithms in Proceedings of the Second Annual Joint Conference on Information Sciences, September 28–October 1, Wrightsville Beach, NC, pp.186–189, 1995.

    Google Scholar 

  17. Ziarko W., Variable Precision Rough Set Model; Journal of Computer and System Sciences, 40, pp.39–59, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zbigniew W. Raś Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ślezak, D. (1997). Decision value oriented decomposition of data tables. In: Raś, Z.W., Skowron, A. (eds) Foundations of Intelligent Systems. ISMIS 1997. Lecture Notes in Computer Science, vol 1325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63614-5_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-63614-5_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63614-4

  • Online ISBN: 978-3-540-69612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics