Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel implementation of a Schwarz domain decomposition algorithm

  • Conference paper
  • First Online:
Applied Parallel Computing Industrial Computation and Optimization (PARA 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1184))

Included in the following conference series:

  • 186 Accesses

Abstract

We describe and compare some recent domain decomposition algorithms of Schwarz type with respect to parallel performance. A new, robust domain decomposition algorithm — Additive Average Schwarz is compared with a classical overlapping Schwarz code. Complexity estimates are given in both two and three dimensions and actual implementations are compared on a Paragon machine as well as on a cluster of modern workstations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. E. Bjørstad, M. Dryja, and E. Vainikko, Additive Schwarz methods without subdomain overlap and with new coarse spaces, in Domain Decomposition Methods in Sciences and Engineering, R. Glowinski, J. Périaux, Z. Shi, and O. B. Widlund, eds., John Wiley & Sons, 1996. Proceedings from the Eight International Conference on Domain Dec omposition Metods, May 1995, Beijing.

    Google Scholar 

  2. P. E. Bjørstad and T. Kårstad, Domain decomposition, parallel computing and petroleum engineering, in Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, D. E. Keyes, Y. Saad, and D. G. Truhlar, eds., SIAM, 1995, ch. 3, pp. 39–56.

    Google Scholar 

  3. P. E. Bjørstad, R. Moe, and M. Skogen, Parallel domain decomposition and iterative refinement algorithms, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch, ed., Braunschweig, Germany, 1991, VIEWEG, pp. 28–46. Notes on Numerical Fluid Mechanics, Vol 31, Proceedings of the sixth GAMM-Seminar, Kiel, January 19–21 1990.

    Google Scholar 

  4. P. E. Bjørstad and M. D. Skogen, Domain decomposition algorithms of Schwarz type, designed for massively parallel computers, in Domain Decomposition Methods for Partial Differential Equations, D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, and R. G. Voigt, eds., SIAM, 1992, pp. 362–375. In the proceedings from the Fifth International Symposium on Domain Decomposition Methods, Norfolk, Virginia 1991.

    Google Scholar 

  5. J. H. Bramble and J. Xu, Some estimates for a weighted L2projection, Math. Comp., 56 (1991), pp. 463–476.

    Google Scholar 

  6. M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math., 72 (1996), pp. 313–348.

    Google Scholar 

  7. W. D. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface, MIT Press, 1994.

    Google Scholar 

  8. W. D. Gropp and B. F. Smith, Experiences with domain decomposition in three dimensions: Overlapping Schwarz methods, Contemporary Mathematics, (1991).

    Google Scholar 

  9. B. Hendrickson and R. Leland, The Chaco user's guide, version 2.0, Tech. Report SAND 94-2692, Sandia National Laboratories, July 1995.

    Google Scholar 

  10. D. E. Keyes and W. D. Gropp, A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 166–202.

    Google Scholar 

  11. P. Oswald, On the robustness of the BPX-preconditioner with respect to jumps in the coefficients, tech. report, Dept. of Math. Texas A&M University, College Station, TX 77843-3368, 1995.

    Google Scholar 

  12. B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

    Google Scholar 

  13. J. Xu, Counter examples concerning a weighted L2projection, Math. Comp., 57 (1991), pp. 563–568.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Waśniewski Jack Dongarra Kaj Madsen Dorte Olesen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bjørstad, P.E., Dryja, M., Vainikko, E. (1996). Parallel implementation of a Schwarz domain decomposition algorithm. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds) Applied Parallel Computing Industrial Computation and Optimization. PARA 1996. Lecture Notes in Computer Science, vol 1184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62095-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-62095-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62095-2

  • Online ISBN: 978-3-540-49643-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics