Nothing Special   »   [go: up one dir, main page]

Skip to main content

A lower bound for Linear Interval Routing

  • Regular Papers
  • Conference paper
  • First Online:
Distributed Algorithms (WDAG 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1151))

Included in the following conference series:

Abstract

Linear Interval Routing is a space-efficient routing method for point-to-point communication networks. It is a restricted variant of Interval Routing where the routing range associated with every link is represented by an interval with no wrap-around. A common way to measure the efficiency of such routing methods is in terms of the maximal length of a path a message traverses. For Interval Routing the upper bound and lower bound on this quantity are 2D and 1.75D — 1, respectively, where D is the diameter of the network. We prove a lower bound of Ω(D2) on the length of a path a message traverses under Linear Interval Routing. We further extend the result by showing a connection between the efficiency of Linear Interval Routing and the bi-diameter of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bakker, E.M., van Leeuwen, J., Tan, R.B.: Prefix Routing Schemas in Dynamic Networks. Tech. Rep. RUU-CS-90-10, Dept. of Computer science, Utrecht University, Utrecht (1990).

    Google Scholar 

  2. Bakker, E.M., van Leeuwen, J., Tan, R.B.: Linear Interval Routing. Algorithms Review 2 (1991) 45–61.

    Google Scholar 

  3. Dinitz, Y., Private communication.

    Google Scholar 

  4. Even, S.: Graph Algorithms. Computer Science Press, Inc., (1979).

    Google Scholar 

  5. Eilam, T., Moran, S., Zaks, S.: Bi-Diameter in 2-Edge-Connected Graphs. In preparation.

    Google Scholar 

  6. Fraigniaud, P., Gavoile, C.: Interval Routing Schemes. Research Rep. 94-04, LIPS-ENS Lyon (1994).

    Google Scholar 

  7. Li, Q., Sotteau, D., Xu, J.: 2-Diameter of De Bruijn Networks. Rapport de Recherche 950, Universite de Paris Sud, centre d'Orsay, Laboratoire de Recherche en Informatique, 91405 Orsay, France (1995).

    Google Scholar 

  8. van Leeuwen, J., Tan, R.B.: Routing with Compact Routing Tables. Tech. Rep. RUU-CS-83-16, Dept. of Computer Science, Utrecht University (1983). Also as: Computer Networks with Compact Routing Tables. In: G. Rozenberg and A. Salomaa (Eds.) The book of L, Springer-Verlag, Berlin (1986) 298–307.

    Google Scholar 

  9. van Leeuwen, J., Tan, R.B.: Computer Network with Compact Routing Tables. In: G. Rozenberg and A. Salomaa (Eds.), The Book of L., Springer-Verlag, Berlin (1986) 259–273.

    Google Scholar 

  10. Ružička, P.: A Note on the Efficiency of an Interval Routing Algorithm. The Computer Journal 34 (1991) 475–476.

    Article  Google Scholar 

  11. Santoro, N., Khatib, R.: Routing Without Routing Tables. Tech. Rep. SCS-TR-6, School of Computer Science, Carleton University (1982). Also as: Labeling and Implicit Routing in Networks. The Computer Journal 28 (1) (1985) 5–8.

    Google Scholar 

  12. Santoro, N., Khatib, R.: Labeling and Implicit Routing in Networks. The Computer Journal, 28 (1) (1985) 5–8.

    Article  Google Scholar 

  13. Tse, S. S.H., Lau, F. C.M.: A Lower Bound for Interval Routing in General Networks. Tech. Rep. TR-94-09, Department of Computer Science, University of Hong Kong (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Özalp Babaoğlu Keith Marzullo

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eilam, T., Moran, S., Zaks, S. (1996). A lower bound for Linear Interval Routing. In: Babaoğlu, Ö., Marzullo, K. (eds) Distributed Algorithms. WDAG 1996. Lecture Notes in Computer Science, vol 1151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61769-8_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-61769-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61769-3

  • Online ISBN: 978-3-540-70679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics