Nothing Special   »   [go: up one dir, main page]

Skip to main content

Investigating a Parallel Breeder Genetic Algorithm on the inverse Aerodynamic design

  • Applications of Evolutionary Computation Evolutionary Computation in Mechanical, Chemical, Biological, and Optical Engineering
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

Breeder Genetic Algorithms represent a class of random optimisation techniques gleaned from the science of population genetics, which have proved their ability to solve hard optimisation problems with continuous parameters. In this paper we test a parallel version of this technique against a sequential Breeder Genetic Algorithm on a typical inverse design problem in Aerodynamics, the problem of an aerofoil geometry recover starting from a target pressure distribution. Our results show that Parallel Breeder Genetic Algorithms are well suited for applications in Aerodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: with Applications. McGraw Hill, New York, 1984.

    Google Scholar 

  2. G. S. Dulikravich, “Aerodynamic Shape Design and Optimization,” Tech. Rep. 91-0476, AIAA Paper, Jan. 1991.

    Google Scholar 

  3. P. D. Frank and G. R. Shubin, “A Comparison of Optimization-based Approaches for a Model Computational Aerodynamic Design Problem,” Boeing Computer Serv., Apr. 1990.

    Google Scholar 

  4. J. A. van Egmond, “Numerical Optimization of Target Pressure Distributions for Subsonic and Transonic Airfoil Design,” in Proceedings of AGARD Conference on Computational Methods for Aerodynamic Design (Inverse) and Optimization, no. 463, ref. 17, Mar. 1990.

    Google Scholar 

  5. J. H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, 1975.

    Google Scholar 

  6. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, Mass., 1989.

    Google Scholar 

  7. S. Obayashi and S. Takanashi, “Genetic Optimization of Target Pressure Distributions for Inverse Design Methods,” in Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun 19–22 1995.

    Google Scholar 

  8. I. De Falco, R. Del Balio, A. Della Cioppa and E. Tarantino, “A Parallel Genetic Algorithm for Transonic Airfoil Optimisation,” in Proceedings of the IEEE International Conference on Evolutionary Computing, Perth, University of Western Australia, Australia, pp. 429–434, 1995.

    Google Scholar 

  9. H. Mühlenbein and D. Schlierkamp-Voosen, “Analysis of Selection, Mutation and Recombination in Genetic Algorithms,” Neural Network World, vol. 3, pp. 907–933, 1993.

    Google Scholar 

  10. H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the breeder Genetic Algorithm I. Continuous Parameter Optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993.

    Google Scholar 

  11. H. Mühlenbein and D. Schlierkamp-Voosen, “The Science of Breeding and its Application to the Breeder Genetic Algorithm,” Evolutionary Computation, vol. 1, pp. 335–360, 1994.

    Google Scholar 

  12. T. Bäck, F. Hoffmeister and H. Schwefel, “A Survey of Evolution Strategies,” in Proceedings of the 4th International Conference on Genetic Algorithms, (R. K. Belew, L. B. Booker, eds.), pp. 2–12, M. Kaufmann Publisher, 1991.

    Google Scholar 

  13. D. E. Rogers, Mathematical Elements for Computer Graphics. Addison-Wesley, Reading, Mass., 1989.

    Google Scholar 

  14. R. Tanese, “Distributed Genetic Algorithms,” in Proceedings of the 3rd International Conference on Genetic Algorithms, (J. D. Schaffer, ed.), pp. 434–439, M. Kaufmann Publisher, 1989.

    Google Scholar 

  15. B. Manderick and P. Spiessens, “Fine-grained Parallel Genetic Algorithms,” in Proceedings of the 3rd International Conference on Genetic Algorithms, (J. D. Schaffer, ed.), pp. 428–433, M. Kaufmann Publisher, 1989.

    Google Scholar 

  16. H. Mühlenbein, M. Schomisch and J. Born, “The Parallel Genetic Algorithm as Function Optimizer,” Parallel Computing, vol. 17, pp. 619–632, 1991.

    Article  Google Scholar 

  17. E. CantÚ-Paz, “A Summary of Research on Parallel Genetic Algorithms” IlliGAL Report, no. 95007, University of Illinois at Urbana-Champaign, USA, July 1995.

    Google Scholar 

  18. I. De Falco, R. Del Balio, A. Della Cioppa and E. Tarantino, “Breeder Genetic Algorithm for Airfoil Design Optimisation,” in Proceedings of the IEEE International Conference on Evolutionary Computing, Nagoya, Japan, pp. 71–75, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Falco, I., Della Cioppa, A., Del Balio, R., Tarantino, E. (1996). Investigating a Parallel Breeder Genetic Algorithm on the inverse Aerodynamic design. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1061

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_1061

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics