Abstract
In this paper, an approach is presented to incorporate problem specific knowledge into a genetic algorithm which is used to compute near-optimum solutions to traveling salesman problems (TSP). The approach is based on using a tour construction heuristic for generating the initial population, a tour improvement heuristic for finding local optima in a given TSP search space, and new genetic operators for effectively searching the space of local optima in order to find the global optimum. The quality and efficiency of solutions obtained for a set of TSP instances containing between 318 and 1400 cities are presented.
Preview
Unable to display preview. Download preview PDF.
References
K. Boese, “Cost versus Distance in the Traveling Salesman Problem,” Tech. Rep. TR-950018, UCLA CS Department, 1995.
K.D. Boese and S. Muddu, “A New Adaptive Multi-Start Technique for Combinatorial Global Optimizations,” Operations Research Letters 16, pp. 101–113, 1994.
B. Freisleben and M. Schulte, “Combinatorial Optimization with Parallel Adaptive Threshold Accepting,” in Proceedings of the 1992 European Workshop on Parallel Computing, Barcelona, pp. 176–179. IOS Press, 1992.
B. Freisleben and P. Merz, “A Genetic Local Search Algorithm for Solving Symmetric and Asymmetric Traveling Salesman Problems,” in Proc. 1996 IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, pp. 616–621, 1996.
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
M. Gorges-Schleuter, “ASPARAGOS: An Asynchronous Parallel Genetic Optimization Strategy,” in Proc. of the 3rd Int. Conf. on Genetic Algorithms, Morgan Kaufmann, 1989.
M. Gorges-Schleuter, “Explicit Parallelism of Genetic Algorithms through Population Structures,” in Parallel Problem Solving from Nature, (H. Schwefel and R. Männer, Eds.), pp. 150–159, Springer-Verlag, 1991.
J. J. Grefenstette, “Incorporating Problem Specific Knowledge into Genetic Algorithms,” in Genetic Algorithms and Simulated Annealing, (L. Davis, ed.), pp. 42–60, Morgan Kaufmann, 1987.
J. Grefenstette, R. Gopal, B. Rosimaita, and D. van Gucht, “ Genetic Algorithms for the Traveling Salesman Problem,” in Proc. of an Int. Conf. on Genetic Algorithms and their Applications, pp. 160–168, 1985.
L. Homaifar, C. Guan, and G. Liepins, “A New Approach to the Traveling Salesman Problem by Genetic Algorithms,” in Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 460–466, Morgan Kaufmann, 1993.
P. Jog, J. Y. Suh, and D. van Gucht, “The Effects of Population Size, Heuristic Crossover and Local Improvement on a Genetic Algorithm for the Travelling Salesman Problem,” in Proc. of the 3rd Int. Conf. on Genetic Algorithms, pp. 110–115, Morgan Kaufmann, 1989.
D. S. Johnson, “Local Optimization and the Traveling Salesman Problem,” in Annual Int. Colloquium on Automata, Languages and Programming, 1990.
D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem: A Case Study in Local Optimization,” in (E. H. L. Aarts and J. K. Lenstra, eds.) Local Search in Combinatorial Optimization, Wiley & Sons, New York, to appear.
P. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications. Kluwer Academic Publ., 1987.
E. L. Lawler, J. K. Lenstra and D. B. Shmoys, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley and Sons, New York, 1985.
S. Lin, “Computer Solutions of the Travelling Salesman Problem,” Bell System Tech. Journal, Vol. 44, pp. 2245–2269, 1965.
S. Lin and B. Kernighan, “An Effective Heuristic Algorithm for the Traveling Salesman Problem,” Operations Research, Vol. 21, pp. 498–516, 1973.
K. Mathias and D. Whitley, “Genetic Operators, the Fitness Landscape and the Traveling Salesman Problem,” in Parallel Problem Solving from Nature, (R. Männer and B. Manderick, Eds.), pp. 219–228, Elsevier, 1992.
H. Mühlenbein, “Parallel Genetic Algorithms, Population Genetics and Combinatorial Optimization,” in Proc. of the 3rd Int. Conf. on Genetic Algorithms, (J. D. Schaffer, ed.), pp. 416–421, Morgan Kaufmann, 1989.
H. Mühlenbein, “Evolution in Time and Space — The Parallel Genetic Algorithm,” in Foundations of Genetic Algorithms, (G. J. E. Rawlins, ed.), M. Kaufmann, 1991.
H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution Algorithms in Combinatorial Optimization,” Parallel Computing, Vol. 7, pp. 65–88, 1988.
M. Padberg and G. Rinaldi, “Optimization of a 532-city Symmetric Traveling Salesman Problem by Branch & Cut,” Operations Research Lett. 6, pp. 1–7, 1987.
G. Reinelt, “TSPLIB — A Traveling Salesman Problem Library,” ORSA Journal on Computing, Vol. 3, No. 4, pp. 376–384, 1991.
G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications. Vol. 840 of Lecture Notes in Computer Science, Springer-Verlag, 1994.
J. Y. Suh and D. van Gucht, “Incorporating Heuristic Information into Genetic Search,” in Proc. of the 2nd Int. Conf. on Genetic Algorithms, pp. 100–107, Lawrence Erlbaum, 1987.
A. Y. C. Tang and K. S. Leung, “A Modified Edge Recombination Operator for the Travelling Salesman Problem,” in Parallel Problem Solving from Nature, (H.-P. Schwefel and R. Männer, Eds.), pp. 180–188, Springer-Verlag, 1994.
N. L. J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. van Laarhoven, and E. Pesch, “Genetic Local Search Algorithms for the Traveling Salesman Problem,” in Parallel Problem Solving from Nature, (H. P. Schwefel and R. Männer, Eds.), pp. 109–116, Springer-Verlag, 1991.
M. Wall, “GALIB 2.3.2,” http://lancet.mit.edu/ga, 1995.
D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling Problems and Traveling Salesman: The Genetic Edge Recombination Operator,” in Proc. of the 3rd Int. Conf. on Genetic Algorithms, pp. 133–140, Morgan Kaufmann, 1989.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freisleben, B., Merz, P. (1996). New genetic local search operators for the traveling salesman problem. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1052
Download citation
DOI: https://doi.org/10.1007/3-540-61723-X_1052
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61723-5
Online ISBN: 978-3-540-70668-7
eBook Packages: Springer Book Archive