Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic

  • Conference paper
  • First Online:
CONCUR '96: Concurrency Theory (CONCUR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1119))

Included in the following conference series:

Abstract

Monadic second order logic (MSOL) over transition systems is considered. It is shown that every formula of MSOL which does not distinguish between bisimilar models is equivalent to a formula of the propositional Μ-calculus. This expressive completeness result implies that every logic over transition systems invariant under bisimulation and translatable into MSOL can be also translated into the Μ-calculus. This gives a precise meaning to the statement that most propositional logics of programs can be translated into the Μ-calculus.

On leave from: Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, POLAND

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In LICS '95, pages 90–100, 1995.

    Google Scholar 

  2. A. Amir. Separation in nonlinear time models. Information and Computation, 66:177–203, 1985.

    Google Scholar 

  3. A. Arnold. Finite Transition Systems. Masson, Prentice-Hall, 1994.

    Google Scholar 

  4. B. Banieqbal and H. Barringer. Temporal logic with fixed points. volume 398 of LNCS, pages 62–74. Springer-Verlag, 1989.

    Google Scholar 

  5. J. Benthem. Languages in Action: Categories, Lambdas and Dynamic Logic, volume 130 of Studies in Logic. North-Holland, 1991.

    Google Scholar 

  6. J. Benthem and J. Bergstra. Logic of transition systems. Report P9308, Programming Research Group, University of Amsterdam, 1993.

    Google Scholar 

  7. A. Bouajjani, R. Echahed, and P. Habermehl. On verification problem of nonregular properties of nonregular processes. In LICS '95, pages 123–133, 1995.

    Google Scholar 

  8. I. Castellani. Bisimulations and abstraction homomorphisms. Journal of Computer and System Sciences, 34:210–235, 1987.

    Google Scholar 

  9. M. Dam. CTL* and ECTL* as a fragments of the modal Μ-calculus. In CAAP'92, volume 581 of LNCS, pages 145–165, 1992.

    Google Scholar 

  10. E. A. Emerson. Temporal and modal logic. In J. Leeuven, editor, Handbook of Theoretical Computer Science Vol.B, pages 995–1072. Elsevier, 1990.

    Google Scholar 

  11. E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In Proc. FOCS 91, 1991.

    Google Scholar 

  12. J. Esparza and A. Kiehn. On the model checking problem for branching time logics and basic parallel processes. In CAV '95, volume 939 of LNCS, pages 353–366, 1995.

    Google Scholar 

  13. A. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th Ann. ACM Symp. on Principles of Programming Languages, pages 163–173, 1980.

    Google Scholar 

  14. D. Gabbay. Expressive functional completeness in tense logic. In Aspects of Philosophical Logic, pages 91–117. Reidel, 1981.

    Google Scholar 

  15. H. Gaifman. On local and non-local properties. In Herbrand Symposium, Logic Colloquium'81, pages 105–135. North-Holland, 1982.

    Google Scholar 

  16. T. Hafer and W. Thomas. Computation tree logic CTL* and path quantifiers in the monadic theory of the binary tree. In 14th Internat. Coll. on Automata, Languages and Programming, volume 267 of LNCS, pages 269–279, 1987.

    Google Scholar 

  17. D. Harel and D. Raz. Deciding properties of nonregular programs. SIAM J. Comput, 22:857–874, 1993.

    Google Scholar 

  18. D. Janin. Propriérés logiques du non-déterminisme et Μ-calcul modal. PhD thesis, LaBRI — Université de Bordeaux I, 1995. Available from http://www.labri.u-bordeaux.fr/∼janin.

    Google Scholar 

  19. D. Janin and I. Walukiewicz. Automata for the Μ-calculus and related results. In MFCS '95, volume 969 of LNCS, pages 552–562, 1995.

    Google Scholar 

  20. H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, 1968.

    Google Scholar 

  21. D. Kozen. Results on the prepositional mu-calculus. Theoretical Computer Science, 27:333–354, 1983.

    Google Scholar 

  22. R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Clifs, 1989.

    Google Scholar 

  23. D. Muller and P. Schupp. Alternating automata on infinite trees. Theoretical Computer Science, 54:267–276, 1987.

    Google Scholar 

  24. D. Niwiński. Fixed points vs. infinite generation. In LICS '88, pages 402–409, 1988.

    Google Scholar 

  25. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, 1981.

    Google Scholar 

  26. A. Pnueli. The temporal logic of programs. In 18th Symposium on Foundations of Computer Science, pages 46–57, 1977.

    Google Scholar 

  27. M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

    Google Scholar 

  28. C. S. Stirling. Modal and temporal logics. In S.Abramsky, D.Gabbay, and T.Maibaum, editors, Handbook of Logic in Comuter Science, pages 477–563. Oxford University Press, 1991.

    Google Scholar 

  29. P. Thiagarajan. A trace based extension of linear time temporal logic. In LICS, pages 438–447, 1994.

    Google Scholar 

  30. R. van Glabbeek. The linear time — branching time spectrum. In CONCUR'90, volume 458 of LNCS, pages 278–297, 1990.

    Google Scholar 

  31. I. Walukiewicz. Monadic second order logic on tree-like structures. In STACS '96, volume 1046 of LNCS, pages 401–414, 1996.

    Google Scholar 

  32. G. Winskel and M. Nielsen. Handbook of Logic in Computer Science, volume 4, Chapter Models for Concurrency, pages 1–148. Clarendon Press-Oxford, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ugo Montanari Vladimiro Sassone

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janin, D., Walukiewicz, I. (1996). On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V. (eds) CONCUR '96: Concurrency Theory. CONCUR 1996. Lecture Notes in Computer Science, vol 1119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61604-7_60

Download citation

  • DOI: https://doi.org/10.1007/3-540-61604-7_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61604-7

  • Online ISBN: 978-3-540-70625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics