Nothing Special   »   [go: up one dir, main page]

Skip to main content

A new algorithm and refined bounds for extended gcd computation

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1122))

Included in the following conference series:

Abstract

Extended gcd computation is interesting itself. It also plays a fundamental role in other calculations. We present a new algorithm for solving the extended gcd problem. This algorithm has a particularly simple description and is practical. It also provides refined bounds on the size of the multipliers obtained.

Partially supported by the Natural Sciences and Engineering Research Council (Canada) and Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (Québec).

Partially supported by the Australian Research Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W.A. Blankinship. A new version of the Euclidean algorithm. Amer. Math. Mon., 70:742–745, 1963.

    Google Scholar 

  2. G.H. Bradley. Algorithm and bound for the greatest common divisor of n integers. Commun. ACM, 13:433–436, 1970.

    Google Scholar 

  3. G. Havas and B.S. Majewski. Integer matrix diagonalization. J. Symbolic Comput., to appear.

    Google Scholar 

  4. G. Havas and B.S. Majewski. Hermite normal form computation for integer matrices. Congressus Numerantium, 105:184–193, 1994.

    Google Scholar 

  5. G. Havas and B.S. Majewski. A hard problem which is almost always easy. In Algorithms and Computation, Lecture Notes in Computer Science 1004, 216–223, 1995.

    Google Scholar 

  6. G. Havas, B.S. Majewski and K.R. Matthews. Extended gcd algorithms. Technical Report TR0302, The University of Queensland, Brisbane, 1994.

    Google Scholar 

  7. C.S. Iliopoulos. Worst case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. Computing, 18:658–669, 1989.

    Google Scholar 

  8. D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 2nd edition, 1973.

    Google Scholar 

  9. B.S. Majewski and G. Havas. The complexity of greatest common divisor computations. In Algorithmic Number Theory, Lecture Notes in Computer Science 877, 184–193, 1994.

    Google Scholar 

  10. B.S. Majewski and G. Havas. A solution to the extended gcd problem. In ISSAC'95 (Proc. 1995 Internat. Sympos. Symbolic Algebraic Comput.), ACM Press, New York, 248–253, 1995.

    Google Scholar 

  11. B.S. Majewski and G. Havas. Extended gcd calculation. Congressus Numerantium, 111:104–114, 1995.

    Google Scholar 

  12. M-H. Mathieu and D. Ford. On p-adic Computation of the Rational Form of a Matrix, J. Symbolic Comput., 10:453–464, 1990.

    Google Scholar 

  13. P. Ozello. Calcul Exact des formes de Jordan et de Frobenius d'une Matrice. Doctoral Thesis, University of Grenoble, 1987.

    Google Scholar 

  14. M.S. Waterman. Multidimensional greatest common divisor and Lehmer algorithms. BIT, 17:465–478, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Cohen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ford, D., Havas, G. (1996). A new algorithm and refined bounds for extended gcd computation. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-61581-4_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61581-1

  • Online ISBN: 978-3-540-70632-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics