Abstract
A computation lasting nearly two CPU-years has determined the totally real degree 6 algebraic number field of minimum discriminant with Galois group S5. The S5 sextic fields of minimum discriminant have also been determined for signatures (0,3) and (2, 2). The enumeration of primitive sextic fields of minimum discriminant is now complete for all combinations of Galois group and signature.
Research supported by the Natural Sciences and Engineering Research Council (Canada) and Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (Québec).
Similar content being viewed by others
References
D. Ford and M. Pohst, The Totally Real A 5 Extension of Degree 6 with Minimum Discriminant, Experimental Math. 1 (1992), no. 3, 231–235.
D. Ford and M. Pohst, The Totally Real A 6 Extension of Degree 6 with Minimum Discriminant, Experimental Math. 2 (1993) no. 3, 231–232.
D. Ford, M. Pohst, M. Daberkow and N. Haddad, The S5 Extensions of Degree 6 with Minimum Discriminant (to appear).
J. Martinet, Discriminants and Permutation Groups, Number Theory, Proceedings of the First Conference of the Canadian Number Theory Association, Banff, 1988 (R. A. Mollin, ed.), de Gruyter, Berlin and New York, 1990, 359–385.
M. Olivier, Corps sextiques primitifs, Annales de l'Institut Fourier 40 (1990), no. 4, 757–767.
M. Pohst, On the Computation of Number Fields of Small Discriminants Including the Minimum Discriminant of Sixth Degree Fields, J. Number Theory 14 (1982), 99–117.
M. Pohst, P. Weiler and H. Zassenhaus, On Effective Computation of Fundamental Units II, Math. Comp. 38 (1982), no. 157, 293–329.
B. L. van der Waerden, Algebra, Volume 1, Ungar, New York, 1970.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ford, D. (1996). Minimum discriminants of primitive sextic fields. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_49
Download citation
DOI: https://doi.org/10.1007/3-540-61581-4_49
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61581-1
Online ISBN: 978-3-540-70632-8
eBook Packages: Springer Book Archive