Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minimum discriminants of primitive sextic fields

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1122))

Included in the following conference series:

  • 2588 Accesses

Abstract

A computation lasting nearly two CPU-years has determined the totally real degree 6 algebraic number field of minimum discriminant with Galois group S5. The S5 sextic fields of minimum discriminant have also been determined for signatures (0,3) and (2, 2). The enumeration of primitive sextic fields of minimum discriminant is now complete for all combinations of Galois group and signature.

Research supported by the Natural Sciences and Engineering Research Council (Canada) and Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (Québec).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Ford and M. Pohst, The Totally Real A 5 Extension of Degree 6 with Minimum Discriminant, Experimental Math. 1 (1992), no. 3, 231–235.

    Google Scholar 

  2. D. Ford and M. Pohst, The Totally Real A 6 Extension of Degree 6 with Minimum Discriminant, Experimental Math. 2 (1993) no. 3, 231–232.

    Google Scholar 

  3. D. Ford, M. Pohst, M. Daberkow and N. Haddad, The S5 Extensions of Degree 6 with Minimum Discriminant (to appear).

    Google Scholar 

  4. J. Martinet, Discriminants and Permutation Groups, Number Theory, Proceedings of the First Conference of the Canadian Number Theory Association, Banff, 1988 (R. A. Mollin, ed.), de Gruyter, Berlin and New York, 1990, 359–385.

    Google Scholar 

  5. M. Olivier, Corps sextiques primitifs, Annales de l'Institut Fourier 40 (1990), no. 4, 757–767.

    Google Scholar 

  6. M. Pohst, On the Computation of Number Fields of Small Discriminants Including the Minimum Discriminant of Sixth Degree Fields, J. Number Theory 14 (1982), 99–117.

    Google Scholar 

  7. M. Pohst, P. Weiler and H. Zassenhaus, On Effective Computation of Fundamental Units II, Math. Comp. 38 (1982), no. 157, 293–329.

    Google Scholar 

  8. B. L. van der Waerden, Algebra, Volume 1, Ungar, New York, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Cohen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ford, D. (1996). Minimum discriminants of primitive sextic fields. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-61581-4_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61581-1

  • Online ISBN: 978-3-540-70632-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics