Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semantic trees revisited: Some new completeness results

  • Session 8A
  • Conference paper
  • First Online:
Automated Deduction — Cade-13 (CADE 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1104))

Included in the following conference series:

  • 144 Accesses

Abstract

The method of proving refutational completeness via semantic trees is extended to cope with some new proof search refinements of resolution. It is also shown that a broad class of refinements can be combined with various deletion rules and a strong restriction on factoring without loosing completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baaz, M., Fermüller, C.G.: Resolution-based Theorem Proving for Many-valued Logics. J. Symbolic Computation 11 (1995) 353–391

    Article  Google Scholar 

  2. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York and London, 1973

    Google Scholar 

  3. Eisinger, N., Ohlbach, H.-J., Präcklein, A.: Reduction Rules for Resolution-Based Systems. J. Artificial Intelligence 50 (1991) 141–181

    Article  Google Scholar 

  4. Fermüller, C.G.: Resolution Variant Deciding Some Classes of Clause Sets. In: Computer Science Logic (CSL'90), Heidelberg, Germany, eds. E. Börger et al., Springer Verlag, LNCS 533 (1991) 128–144

    Google Scholar 

  5. Fermüller, C.G.: A Simple Resolution Based Decision Procedure for the Maslov Class. In: Developments in Theoretical Computer Science, Proceedings of the 7th IMYCS, Smolenice 1992, Gordon & Breach, 1994, 197–204

    Google Scholar 

  6. Fermüller, C.G., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the Decision Problem. Springer Verlag, LNAI 679 (1993)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theorie of NP-completenes. W.H. Freeman, San Francisco, 1979

    Google Scholar 

  8. Gottlob, G., Fermüller, C.G.: Removing Redundancy from a Clause. J. Artificial Intelligence 61 (1993) 263–289

    Article  Google Scholar 

  9. Hsiang, J., Rusinowitch, M.: Proving Refutational Completeness of TheoremProving Strategies: The Transfinite Semantic Tree Method. J. Assoc. of Comp. Mach. 38 (1991) 559–587

    Google Scholar 

  10. Joyner, W.H.: Resolution Strategies as Decision Procedures. J. Assoc. of Comp. Mach. 23 (1976) 398–417

    Google Scholar 

  11. Kowalski R., Hayes, P.J.: Semantic Trees in Automated Theorem Proving. In: Machine Intelligence 4 (1969), eds. B. Meltzer and D. Michie, Edinburgh University Press, 87–101

    Google Scholar 

  12. Leitsch, A.: On Different Concepts of Resolution. Zeitschr. f. math. Logik und Grundlagen d. Math. 35 (1989) 71–77

    Google Scholar 

  13. Loveland, D.: Automated Theorem Proving — A Logical Basis. North Holland, Amsterdam, New York, Oxford, 1978

    Google Scholar 

  14. McCune W.: Otter 3.0 Users Guide. Argonne National Laboratory, Argonne (Ill.), 1990

    Google Scholar 

  15. Noll, H.: A Note on Resolution: How to Get Rid of Factoring Without Loosing Completeness. In: 5th Conference on Automated Deduction, Springer Verlag, LNCS 87 (1980) 250–263

    Google Scholar 

  16. Robinson, J.A.: A Machine Oriented Logic Based on the Resolution Principle. J. Assoc. of Comp. Mach. 12 (1965) 23–41

    Google Scholar 

  17. Robinson, J.A.: The Generalized Resolution Principle. In: Machine Intelligence 3 (1968), ed. D. Michie, Edinburgh University Press, 77–93

    Google Scholar 

  18. Slagle, J.R.: Automatic Theorem Proving with Renamable and Semantic Resolution. J. Assoc. of Comp. Mach. 14 (1967) 687–697

    Google Scholar 

  19. Weidenbach, C.: Minimal Resolution. Max-Planck-Institut für Informatik, Technical report MPI-I-94-227, Saarbrücken, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. A. McRobbie J. K. Slaney

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fermüller, C.G. (1996). Semantic trees revisited: Some new completeness results. In: McRobbie, M.A., Slaney, J.K. (eds) Automated Deduction — Cade-13. CADE 1996. Lecture Notes in Computer Science, vol 1104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61511-3_114

Download citation

  • DOI: https://doi.org/10.1007/3-540-61511-3_114

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61511-8

  • Online ISBN: 978-3-540-68687-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics