Abstract
A method for the analysis of nonstationary time series with multiple modes of behaviour is presented. In particular, it is not only possible to detect a switching of dynamics but also a less abrupt, time consuming drift from one mode to another. This is achieved by an unsupervised algorithm for segmenting the data according to the modes and a subsequent search through the space of possible drifts. Applications to speech and physiological data demonstrate that analysis and modeling of real world time series can be improved when the drift paradigm is taken into account.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cacciatore, T.W., Nowlan, S.J. (1994). Mixtures of Controllers for Jump Linear and Non-linear Plants. NIPS'93, Morgan Kaufmann.
Kaneko, K. (1989). Chaotic but Regular Posi-Nega Switch among Coded Attractors by Cluster-Size Variation, Phys. Rev. Lett. 63, 219.
Kohlmorgen, J., Müller, K.-R., Pawelzik, K. (1994). Competing Predictors Segment and Identify Switching Dynamics. ICANN'94, Springer London, 1045–1048.
Kohlmorgen, J., Müller, K.-R., Pawelzik, K. (1995). Improving short-term prediction with competing experts. ICANN'95, EC2 & Cie, Paris, 2:215–220.
Langhorst, P., Schulz, B., Schulz, G., Lambertz, M. (1983). Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighbouring neurons influenced by cardiovascular and respiratory afferents. J.A.N.S. 9: 411–432.
Lapedes, A., R. Farber (1987). Nonlinear Signal Processing Using Neural Networks: Prediction and System Modelling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, New Mexico.
Mackey, M., Glass, L. (1977). Oscillation and Chaos in a Physiological Control System, Science 197, 287.
Müller, K.-R., Kohlmorgen, J., Pawelzik, K. (1995). Analysis of Switching Dynamics with Competing Neural Networks, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E78-A, No.10, 1306–1315.
Müller, K.-R., Kohlmorgen, J., Rittweger, J., Pawelzik, K. (1995). Analysing Physiological Data from the Wake-Sleep State Transition with Competing Predictors, in NOLTA 95: Las Vegas Symposium on Nonlinear Theory and its Applications.
Müller, K.-R., Kohlmorgen, J., Rittweger, J., Pawelzik, K., in preparation
Packard, N.H., Crutchfield J.P., Farmer, J.D., Shaw, R.S. (1980). Geometry from a Time Series. Physical Review Letters, 45:712–716, 1980.
Pawelzik, K. (1994). Detecting coherence in neuronal data. In: Domany,E., Van Hemmen, L., Schulten, K., (Eds.), Physics of neural networks, Springer.
Pawelzik, K., Kohlmorgen, J., Müller, K.-R. (1996). Annealed Competition of Experts for a Segmentation and Classification of Switching Dynamics, Neural Computation, 8:2, 342–358.
Rabiner, L.R. (1988). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proc. IEEE, Vol 77, pp. 257–286.
Takens, F. (1981). Detecting Strange Attractors in Turbulence. In: Rand, D., Young, L.-S., (Eds.), Dynamical Systems and Turbulence, Springer Lecture Notes in Mathematics, 898, 366.
Weigend, A.S., Mangeas, M. (1995). Nonlinear gated experts for time series: discovering regimes and avoiding overfitting, University of Colorado, Computer Science Technical Report, CU-CS-764-95.
Weigend, A.S., Gershenfeld, N.A. (Eds.) (1994). Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kohlmorgen, J., Müller, K.R., Pawelzik, K. (1996). Analysis of drifting dynamics with competing predictors. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C., Sendhoff, B. (eds) Artificial Neural Networks — ICANN 96. ICANN 1996. Lecture Notes in Computer Science, vol 1112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61510-5_132
Download citation
DOI: https://doi.org/10.1007/3-540-61510-5_132
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61510-1
Online ISBN: 978-3-540-68684-2
eBook Packages: Springer Book Archive