Preview
Unable to display preview. Download preview PDF.
References
G. Das and D. Joseph. Which triangulations approximate the complete graph. In Proc. Inter. Symp. on Optimal Algorithms, LNCS 401 (Springer, 1989) 168–183.
M. T. Dickerson, R. L. S. Drysdale, S. A. McElfresh, and E. Welzl. Fast greedy triangulation algorithms. Proc. 10th ACM Symp. on Comp. Geom. (1994) 211–220.
D. Eppstein. Approximating the minimum weight triangulation. Disc, and Comp. Geom. 11 (1994) 163–191.
P. D. Gilbert. New results in planar triangulations. Master's thesis, Univ. of Illinois, Urbana, 1979.
S. Goldman. A space efficient greedy triangulation algorithm. Infor. Proc. Lett. 31 (1989) 191–196.
L. Heath and S. Pemmaraju. New results for the minimum weight triangulation problem. Algorithmica 12 (1994) 533–552.
J. M. Keil. Decomposing a Polygon into Simpler Components. PhD thesis, Univ. of Toronto, Canada, 1983.
J. M. Keil. Computing a subgraph of the minimum weight triangulation. Comp. Geom.: Theory & Appl. 4 (1994) 13–26.
D. G. Kirkpatrick. A note on Delaunay and optimal triangulations. Infor. Proc. Lett. 10 (1980) 127–128.
D. Krznaric and C. Levcopoulos. Computing a threaded quadtree from the Delaunay triangulation in linear time. In Proc. 7th CCCG (1995) 187–192.
D. Krznaric and C. Levcopoulos. Computing hierarchies of clusters from the EMST in linear time. In Proc. 15th FST&TCS, LNCS 1026 (Springer, 1995) 443–455.
C. Levcopoulos and D. Krznaric. The greedy triangulation can be computed from the Delaunay in linear time. Tech. Rep. LU-CS-TR:94-136, Lund Univ., 1994.
C. Levcopoulos and D. Krznaric. Quasi-greedy triangulations approximating the minimum weight triangulation. In Proc. 7th SODA (1995) 392–401.
C. Levcopoulos and D. Krznaric. Tight lower bounds for minimum weight triangulation heuristics. Infor. Proc. Lett. 57 (1996) 129–135.
C. Levcopoulos and A. Lingas. Fast algorithms for greedy triangulation. BIT 32 (1992) 280–296.
C. Levcopoulos and A. Lingas. The greedy triangulation approximates the MWT and can be computed in linear time in the average case. In Proc. ICCI, LNCS 497 (Springer, 1991).
A. Lingas. Advances in minimum weight triangulation. PhD thesis, Linköping Univ., Sweden, 1983.
F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction (Springer, 1985).
D. A. Plaisted and J. Hong. A heuristic triangulation algorithm. J. of Algorithms 8 (1987) 405–437.
W. D. Smith. Studies in Computational Geometry Motivated by Mesh Generation. PhD thesis, Princeton Univ., 1989.
C. A. Wang. An optimal algorithm for greedy triangulation of a set of points. In Proc. 6th CCCG (1994) 332–338.
C. A. Wang and F. Chin. Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear-time. In Proc. 3rd ESA, LNCS 979 (Springer, 1995) 280–294.
P. Yoeli. Compilation of data for computer-assisted relief cartography. In J. C. Davis and M. J. McCullagh, eds., Display and Analysis of Spatial Data (Wiley, 1975).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Levcopoulos, C., Krznaric, D. (1996). A fast heuristic for approximating the minimum weight triangulation. In: Karlsson, R., Lingas, A. (eds) Algorithm Theory — SWAT'96. SWAT 1996. Lecture Notes in Computer Science, vol 1097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61422-2_140
Download citation
DOI: https://doi.org/10.1007/3-540-61422-2_140
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61422-7
Online ISBN: 978-3-540-68529-6
eBook Packages: Springer Book Archive