Nothing Special   »   [go: up one dir, main page]

Skip to main content

A fast heuristic for approximating the minimum weight triangulation

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'96 (SWAT 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1097))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Das and D. Joseph. Which triangulations approximate the complete graph. In Proc. Inter. Symp. on Optimal Algorithms, LNCS 401 (Springer, 1989) 168–183.

    Google Scholar 

  2. M. T. Dickerson, R. L. S. Drysdale, S. A. McElfresh, and E. Welzl. Fast greedy triangulation algorithms. Proc. 10th ACM Symp. on Comp. Geom. (1994) 211–220.

    Google Scholar 

  3. D. Eppstein. Approximating the minimum weight triangulation. Disc, and Comp. Geom. 11 (1994) 163–191.

    Google Scholar 

  4. P. D. Gilbert. New results in planar triangulations. Master's thesis, Univ. of Illinois, Urbana, 1979.

    Google Scholar 

  5. S. Goldman. A space efficient greedy triangulation algorithm. Infor. Proc. Lett. 31 (1989) 191–196.

    Google Scholar 

  6. L. Heath and S. Pemmaraju. New results for the minimum weight triangulation problem. Algorithmica 12 (1994) 533–552.

    Google Scholar 

  7. J. M. Keil. Decomposing a Polygon into Simpler Components. PhD thesis, Univ. of Toronto, Canada, 1983.

    Google Scholar 

  8. J. M. Keil. Computing a subgraph of the minimum weight triangulation. Comp. Geom.: Theory & Appl. 4 (1994) 13–26.

    Google Scholar 

  9. D. G. Kirkpatrick. A note on Delaunay and optimal triangulations. Infor. Proc. Lett. 10 (1980) 127–128.

    Google Scholar 

  10. D. Krznaric and C. Levcopoulos. Computing a threaded quadtree from the Delaunay triangulation in linear time. In Proc. 7th CCCG (1995) 187–192.

    Google Scholar 

  11. D. Krznaric and C. Levcopoulos. Computing hierarchies of clusters from the EMST in linear time. In Proc. 15th FST&TCS, LNCS 1026 (Springer, 1995) 443–455.

    Google Scholar 

  12. C. Levcopoulos and D. Krznaric. The greedy triangulation can be computed from the Delaunay in linear time. Tech. Rep. LU-CS-TR:94-136, Lund Univ., 1994.

    Google Scholar 

  13. C. Levcopoulos and D. Krznaric. Quasi-greedy triangulations approximating the minimum weight triangulation. In Proc. 7th SODA (1995) 392–401.

    Google Scholar 

  14. C. Levcopoulos and D. Krznaric. Tight lower bounds for minimum weight triangulation heuristics. Infor. Proc. Lett. 57 (1996) 129–135.

    Google Scholar 

  15. C. Levcopoulos and A. Lingas. Fast algorithms for greedy triangulation. BIT 32 (1992) 280–296.

    Google Scholar 

  16. C. Levcopoulos and A. Lingas. The greedy triangulation approximates the MWT and can be computed in linear time in the average case. In Proc. ICCI, LNCS 497 (Springer, 1991).

    Google Scholar 

  17. A. Lingas. Advances in minimum weight triangulation. PhD thesis, Linköping Univ., Sweden, 1983.

    Google Scholar 

  18. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction (Springer, 1985).

    Google Scholar 

  19. D. A. Plaisted and J. Hong. A heuristic triangulation algorithm. J. of Algorithms 8 (1987) 405–437.

    Google Scholar 

  20. W. D. Smith. Studies in Computational Geometry Motivated by Mesh Generation. PhD thesis, Princeton Univ., 1989.

    Google Scholar 

  21. C. A. Wang. An optimal algorithm for greedy triangulation of a set of points. In Proc. 6th CCCG (1994) 332–338.

    Google Scholar 

  22. C. A. Wang and F. Chin. Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear-time. In Proc. 3rd ESA, LNCS 979 (Springer, 1995) 280–294.

    Google Scholar 

  23. P. Yoeli. Compilation of data for computer-assisted relief cartography. In J. C. Davis and M. J. McCullagh, eds., Display and Analysis of Spatial Data (Wiley, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rolf Karlsson Andrzej Lingas

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levcopoulos, C., Krznaric, D. (1996). A fast heuristic for approximating the minimum weight triangulation. In: Karlsson, R., Lingas, A. (eds) Algorithm Theory — SWAT'96. SWAT 1996. Lecture Notes in Computer Science, vol 1097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61422-2_140

Download citation

  • DOI: https://doi.org/10.1007/3-540-61422-2_140

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61422-7

  • Online ISBN: 978-3-540-68529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics