Nothing Special   »   [go: up one dir, main page]

Skip to main content

Complete solving of linear Diophantine equations and inequations without adding variables

  • Efficient Constraint Handling
  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming — CP '95 (CP 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 976))

Abstract

In this paper, we present an algorithm for solving directly linear Diophantine systems of both equations and inequations. Here directly means without adding slack variables for encoding inequalities as equalities. This algorithm is an extension of the algorithm due to Contejean and Devie [9] for solving linear Diophantine systems of equations, which is itself ageneralization of the algorithm of Fortenbacher [6] for solving a single linearDiophantine equation, All the nice properties of the algorithm of Contejeanand Devie are still satisfied by the new algorithmi it is complete, i.e providesa (finite) description of the set of solutions, it can be implemented with abounded stack, and it admits an incremental version. All of these character-istics enable its easy integration in the CLP paradigm.

This work was partly supported by the European Contract SOL HCM No CHRX CT92 0053

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Ajili and B. Contejean. Complete solving of linear and diophantine equational and inequational systems without adding variables. Technical Report 0175, INRIA, June 1995.

    Google Scholar 

  2. F. Ajili, E. Contejean, E. Domenjoud, M. Filgueiras, C. Kirchner, and A.-P. Tomás. Solving Linear Diophantine Equations: The State of the Art. in preparation, 1995.

    Google Scholar 

  3. Farid Ajili. Etude de la résolution de contraintes diophantiennes linéaires sur les entiers naturels. Rapport de dea, Université Henri Poincaré — Nancy 1, September 1994.

    Google Scholar 

  4. Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A new AC-unification algorithm with a new algorithm for solving diophantine equations. In Proc. 5th IEEE Symp. Logic in Computer Science, Philadelphia, pages 289–299. IEEE Computer Society Press, June 1990.

    Google Scholar 

  5. T. J. Chou and G. E. Collins. Algorithms for the solution of systems of linear diophantine equations. SIAM Journal on computing, 11:687–708, 1982.

    Article  Google Scholar 

  6. M. Clausen and A. Fortenbacher. Efficient solution of linear diophantine equations. Journal of Symbolic Computation, 8(1&2):201–216, 1989.

    Google Scholar 

  7. A. H. Clifford and G. B. Preston. The algebraic theory of semigroups. Number 7 in Mathematical surveys. American Mathematical Society, 1961. There's two volumes. The second was published in 1967.

    Google Scholar 

  8. Evelyne Contejean. Solving *-problems modulo distributivity by a reduction to AC1-unification. Journal of Symbolic Computation, 16:493–521, 1993.

    Article  Google Scholar 

  9. Evelyne Contejean and Hervé Devie. An efficient algorithm for solving systems of diophantine equations. Information and Computation, 113(1):143–172, August 1994.

    Article  Google Scholar 

  10. Eric Domenjoud. Outils pour la déduction automatique dans les théories associatives-commutatives. Thèse de doctorat de l'université de Nancy I, 1991.

    Google Scholar 

  11. Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic approach. In Proc. 16th Mathematical Foundations of Computer Science, Warsaw, LNCS 520. Springer-Verlag, 1991.

    Google Scholar 

  12. M. Filgueiras and A. P. Tomás. Fast methods for solving linear diophantine equations. In M. Filgueiras and Damas L., editors, Proceedings of the 6th Portuguese Conference on Artificial Intelligence, 727, pages 297–306. Lecture Notes in Artificial Intelligence, Springer-Verlag, 1993.

    Google Scholar 

  13. T. Guckenbiehl and A. Herold. Solving linear diophantine equations. Technical Report SEKI-85-IV-KL, 1985.

    Google Scholar 

  14. Alexander Herold and Jorg H. Siekmann. Unification in abelian semi-groups. Journal of Automated Reasoning, 3(3):247–283, 1987.

    Article  Google Scholar 

  15. Gérard Huet. An algorithm to generate the basis of solutions to homogeneous linear diophantine equations. Information Processing Letters, 7(3), April 1978.

    Google Scholar 

  16. E. Joxan, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains. In A. Borning, editor, Proceedings of the Second International Workshop on Principles and Practice of Constraint Programming, volume 874 of Lecture Notes in Computer Science, pages 86–94. Springer-Verlag, may 1994.

    Google Scholar 

  17. N. Karmarkar. A new polynomial algorithm for linear programming. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pages 302–311, New York, 1984. Revised version: Combinatorica 4 (1984),373–395.

    Google Scholar 

  18. L. G. Khachiyan. Polynomial algorithms in linear programming. Zhurnal Vychisditel'noi Matematiki i Matematicheskoi Fiziki, pages 51–68, 1980.

    Google Scholar 

  19. Claude Kirchner. From unification in combination of equational theories to a new AC unification algorithm. In H. Ait-Kaci and M. Nivat, editors, Proc. Colloquium on Resolution of Equations in Algebraic Structures, pages 171–210. Academic Press, 1987.

    Google Scholar 

  20. J. L. Lambert. Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire. Comptes Rendus de l'Académie des Sciences de Paris, 305:39,40, 1987. Série I.

    Google Scholar 

  21. G. S. Makanin. Algorithmic decidability of the rank of constant free equations in a free semigroup. Dokl. Akad. Nauk. SSSR 243, 243, 1978.

    Google Scholar 

  22. L. Pottier. Minimal solutions of linear diophantine systems: bounds and algorithms. In Proceedings of the Fourth International Conference on Rewriting Techniques and Applications, pages 162–173, Como, Italy, April 1991.

    Google Scholar 

  23. J. F. Romeuf. A polynomial algorithm for solving systems of two linear diophantine equations. Technical report, Laboratoire d'Informatique de Rouen et LITP, France, 1989.

    Google Scholar 

  24. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

    Google Scholar 

  25. J. C. Sogno. Analysis of standard and new algorithms for the integer and linear constraint satisfaction problem. Technical report, INRIA, 1992.

    Google Scholar 

  26. M. Stickel. A unification algorithm for associative-commutative functions. Journal of the ACM, 28(3):423–434, 1981.

    Article  Google Scholar 

  27. P Van Hentenryck, Constraint Satisfaction in Logic Programming. MIT Press, 1989.

    Google Scholar 

  28. P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58(1–3):113–159, December 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ugo Montanari Francesca Rossi

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ajili, F., Contejean, E. (1995). Complete solving of linear Diophantine equations and inequations without adding variables. In: Montanari, U., Rossi, F. (eds) Principles and Practice of Constraint Programming — CP '95. CP 1995. Lecture Notes in Computer Science, vol 976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60299-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-60299-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60299-6

  • Online ISBN: 978-3-540-44788-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics