Abstract
In this paper, we present an algorithm for solving directly linear Diophantine systems of both equations and inequations. Here directly means without adding slack variables for encoding inequalities as equalities. This algorithm is an extension of the algorithm due to Contejean and Devie [9] for solving linear Diophantine systems of equations, which is itself ageneralization of the algorithm of Fortenbacher [6] for solving a single linearDiophantine equation, All the nice properties of the algorithm of Contejeanand Devie are still satisfied by the new algorithmi it is complete, i.e providesa (finite) description of the set of solutions, it can be implemented with abounded stack, and it admits an incremental version. All of these character-istics enable its easy integration in the CLP paradigm.
This work was partly supported by the European Contract SOL HCM No CHRX CT92 0053
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Ajili and B. Contejean. Complete solving of linear and diophantine equational and inequational systems without adding variables. Technical Report 0175, INRIA, June 1995.
F. Ajili, E. Contejean, E. Domenjoud, M. Filgueiras, C. Kirchner, and A.-P. Tomás. Solving Linear Diophantine Equations: The State of the Art. in preparation, 1995.
Farid Ajili. Etude de la résolution de contraintes diophantiennes linéaires sur les entiers naturels. Rapport de dea, Université Henri Poincaré — Nancy 1, September 1994.
Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A new AC-unification algorithm with a new algorithm for solving diophantine equations. In Proc. 5th IEEE Symp. Logic in Computer Science, Philadelphia, pages 289–299. IEEE Computer Society Press, June 1990.
T. J. Chou and G. E. Collins. Algorithms for the solution of systems of linear diophantine equations. SIAM Journal on computing, 11:687–708, 1982.
M. Clausen and A. Fortenbacher. Efficient solution of linear diophantine equations. Journal of Symbolic Computation, 8(1&2):201–216, 1989.
A. H. Clifford and G. B. Preston. The algebraic theory of semigroups. Number 7 in Mathematical surveys. American Mathematical Society, 1961. There's two volumes. The second was published in 1967.
Evelyne Contejean. Solving *-problems modulo distributivity by a reduction to AC1-unification. Journal of Symbolic Computation, 16:493–521, 1993.
Evelyne Contejean and Hervé Devie. An efficient algorithm for solving systems of diophantine equations. Information and Computation, 113(1):143–172, August 1994.
Eric Domenjoud. Outils pour la déduction automatique dans les théories associatives-commutatives. Thèse de doctorat de l'université de Nancy I, 1991.
Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic approach. In Proc. 16th Mathematical Foundations of Computer Science, Warsaw, LNCS 520. Springer-Verlag, 1991.
M. Filgueiras and A. P. Tomás. Fast methods for solving linear diophantine equations. In M. Filgueiras and Damas L., editors, Proceedings of the 6th Portuguese Conference on Artificial Intelligence, 727, pages 297–306. Lecture Notes in Artificial Intelligence, Springer-Verlag, 1993.
T. Guckenbiehl and A. Herold. Solving linear diophantine equations. Technical Report SEKI-85-IV-KL, 1985.
Alexander Herold and Jorg H. Siekmann. Unification in abelian semi-groups. Journal of Automated Reasoning, 3(3):247–283, 1987.
Gérard Huet. An algorithm to generate the basis of solutions to homogeneous linear diophantine equations. Information Processing Letters, 7(3), April 1978.
E. Joxan, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains. In A. Borning, editor, Proceedings of the Second International Workshop on Principles and Practice of Constraint Programming, volume 874 of Lecture Notes in Computer Science, pages 86–94. Springer-Verlag, may 1994.
N. Karmarkar. A new polynomial algorithm for linear programming. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pages 302–311, New York, 1984. Revised version: Combinatorica 4 (1984),373–395.
L. G. Khachiyan. Polynomial algorithms in linear programming. Zhurnal Vychisditel'noi Matematiki i Matematicheskoi Fiziki, pages 51–68, 1980.
Claude Kirchner. From unification in combination of equational theories to a new AC unification algorithm. In H. Ait-Kaci and M. Nivat, editors, Proc. Colloquium on Resolution of Equations in Algebraic Structures, pages 171–210. Academic Press, 1987.
J. L. Lambert. Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire. Comptes Rendus de l'Académie des Sciences de Paris, 305:39,40, 1987. Série I.
G. S. Makanin. Algorithmic decidability of the rank of constant free equations in a free semigroup. Dokl. Akad. Nauk. SSSR 243, 243, 1978.
L. Pottier. Minimal solutions of linear diophantine systems: bounds and algorithms. In Proceedings of the Fourth International Conference on Rewriting Techniques and Applications, pages 162–173, Como, Italy, April 1991.
J. F. Romeuf. A polynomial algorithm for solving systems of two linear diophantine equations. Technical report, Laboratoire d'Informatique de Rouen et LITP, France, 1989.
A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
J. C. Sogno. Analysis of standard and new algorithms for the integer and linear constraint satisfaction problem. Technical report, INRIA, 1992.
M. Stickel. A unification algorithm for associative-commutative functions. Journal of the ACM, 28(3):423–434, 1981.
P Van Hentenryck, Constraint Satisfaction in Logic Programming. MIT Press, 1989.
P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58(1–3):113–159, December 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ajili, F., Contejean, E. (1995). Complete solving of linear Diophantine equations and inequations without adding variables. In: Montanari, U., Rossi, F. (eds) Principles and Practice of Constraint Programming — CP '95. CP 1995. Lecture Notes in Computer Science, vol 976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60299-2_1
Download citation
DOI: https://doi.org/10.1007/3-540-60299-2_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60299-6
Online ISBN: 978-3-540-44788-7
eBook Packages: Springer Book Archive