Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic classification of skin tumours with high resolution surface profiles

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 970))

Included in the following conference series:

Abstract

This paper describes a new approach to automatic classification of melanocytic tumours based on features extracted from profilometric data. The clinical accuracy of dermatologists in identifying these tumours is only approximately 75%. Automatic classification is based on high resolution skin surface profiles of 4×4 mm2 size with 125 sample points per mm, generated with a laser profilometer. Three categories of profile features are extracted: Textural features, Fourier features and fractal features. Feature selection is performed to determine an optimal feature subset. As a quality measure for a given feature subset, the error rate of the nearest neighbour classifier estimated with the leaving-one-out method is used. With the optimal feature subset, feed forward neural networks with error backpropagation as learning function are trained. Several neural networks with different network topologies and learning parameters were trained to compare the classification performance. A three layer network with one hidden layer consisting of 20 units has shown the best performance of all considered neural networks with a classification error rate of 13.4%. The best results using the nearest neighbour classifier achieved an error rate of 6.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature

  1. C.M. Balch, H.M. Shaw, S.-J. Soong and G.W. Milton, Veränderungen der klinischen und pathologischen Merkmale des Melanoms in den letzten 30 Jahren, in „Hautmelanome“, ed. C.M. Balch and G.W. Milton, Springer (1985).

    Google Scholar 

  2. J.A.H. Lee, Die Entstehung des Melanoms, in „Hautmelanome“, ed. C.M. Balch and G.W. Milton, Springer (1985).

    Google Scholar 

  3. Foley, J., A. van Dam, S. Feiner and J. Hughes, Computer Graphics: Principles and Practice, Addison Wesley (1990).

    Google Scholar 

  4. Ballard, D.H., C.M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ (1982).

    Google Scholar 

  5. Haralick, R.M., K.S. Shanmugam and I. Dinstein, Textural Features for Image Classification, IEEE Trans. SMC 3 (November 1973) pp.610–621.

    Google Scholar 

  6. A. Rosenfeld and J.S. Weszka, Picture Recognition, in „Digital Pattern Recognition“, ed. K.S.Fou, Springer, Berlin (1980).

    Google Scholar 

  7. Falconer, K.J., Fraktale Geometrie, Spektrum Akademischer Verlag, Heidelberg (1993).

    Google Scholar 

  8. Rosenfeld, A., A. Kak, Digital Picture Processing, Second Edition, Acadamic Press, San Diego (1982).

    Google Scholar 

  9. A.K. Jain, Advances in statistical pattern recognition, in „Pattern recognition Theory and Applications“, ed. P.A. Devijver and J. Kittler, Springer, Berlin (1986).

    Google Scholar 

  10. Niemann, H., Klassifikation von Mustern, Springer, Berlin (1983).

    Google Scholar 

  11. Jain, A.K, R.C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ (1988).

    Google Scholar 

  12. Ritter, H., T. Martinez and K. Schulten, Neuronale Netze, Addison-Wesley, Bonn (1992).

    Google Scholar 

  13. S. Raudys and A.K. Jain, Small sample size problems in designing artificial neural networks, in „Artificial Neural Networks and statistical Pattern Recognition“, ed. I.K. Sethi and A.K. Jain, Elsevier Science Publishers, Amsterdam (1991).

    Google Scholar 

  14. D.E. Rumelhart, G.E. Hinton and R.J. Wiliams, Learning Internal Representations by Error Propagation, pp.318–362 in „Parallel Distributed Processing“, ed. D.E. Rumelhart, A G.E. Hinton, R.J. Wiliams, The MIT Press, Cambridge, Massachusetts (1986).

    Google Scholar 

  15. Zell, A., The SNNS Neural Network Simulator, Proc. of the 13. DAGM-Symposium (1991) pp.454–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Václav Hlaváč Radim Šára

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roß, T., Handels, H., Kreusch, J., Busche, H., Wolf, H.H., Pöppl, S.J. (1995). Automatic classification of skin tumours with high resolution surface profiles. In: Hlaváč, V., Šára, R. (eds) Computer Analysis of Images and Patterns. CAIP 1995. Lecture Notes in Computer Science, vol 970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60268-2_318

Download citation

  • DOI: https://doi.org/10.1007/3-540-60268-2_318

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60268-2

  • Online ISBN: 978-3-540-44781-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics