Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spatio-temporal robust motion estimation and segmentation

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 970))

Included in the following conference series:

Abstract

In this paper, a general spatio-temporal framework for motion estimation is presented. It allows to estimate a fully parametric motion model over an image sequence. As parametric models describe one motion only, a robust estimator is introduced in order to cope with several moving objects. The motion segmentation algorithm combines luminance and the composition of all the motions detected over a set of successive frames for motion boundaries estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. K. P. Horn and E. J. Weldon.Direct methods for recovering motion. International Journal of Computer Vision, 2 (1):51–76, 1988.

    Google Scholar 

  2. J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchical model-based motion estimation.In Second European Conference on Computer Vision, pages 237–252, Santa Margherita, Italy, May 1992.

    Google Scholar 

  3. B. Duc. Motion estimation using invariance under group transformations. In 12th International Conference on Pattern Recognition, pages 159–163, Jerusalem, Israel, October 9–13 1994.

    Google Scholar 

  4. G. W. Bluman and S. Kumei. Symmetries and Differential Equations, volume 81 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989.

    Google Scholar 

  5. P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. John Wiley and Sons, New York, 1987.

    Google Scholar 

  6. P. J. Rousseeuw and B. C. van Zomeren. Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85(411):633–639, 1990.

    Google Scholar 

  7. W.B Thompson. Combining motion and contrast for segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:543–549, 1980.

    Google Scholar 

  8. M.J. Black. Combining intensity and motion for incremental segmentation and tracking over long image sequences. In ECCV-92 European Conference On Computer Vision, pages 485–493, Santa Margherita, Italy, May 1992.

    Google Scholar 

  9. S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Václav Hlaváč Radim Šára

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duc, B., Schroeter, P., Bigün, J. (1995). Spatio-temporal robust motion estimation and segmentation. In: Hlaváč, V., Šára, R. (eds) Computer Analysis of Images and Patterns. CAIP 1995. Lecture Notes in Computer Science, vol 970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60268-2_302

Download citation

  • DOI: https://doi.org/10.1007/3-540-60268-2_302

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60268-2

  • Online ISBN: 978-3-540-44781-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics