Nothing Special   »   [go: up one dir, main page]

Skip to main content

A proposal for a set of parallel basic linear algebra subprograms

  • Conference paper
  • First Online:
Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science (PARA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1041))

Included in the following conference series:

Abstract

This paper describes a proposal for a set of Parallel Basic Linear Algebra Subprograms (PBLAS) for distributed memory MIMD computers. The PBLAS are targeted at distributed vector-vector, matrixvector and matrix-matrix operations with the aim of simplifying the parallelization of linear algebra codes, especially when implemented on top of the sequential BLAS.

This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense Advanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the Army Research Office; by the Office of Scientific Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; and by the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615.

The author's research was performed at the Department of Computer Science of University of Tennessee and Oak Ridge National Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aboelaze, M., Chrisochoides, N., Houstis, E.: The parallelization of Level 2 and 3 BLAS Operations on Distributed Memory Machines. Technical Report CSD-TR-91-007, Purdue University, West Lafayette, IN, 1991.

    Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users' Guide, Second Edition. SIAM, Philadelphia, PA, 1995.

    Google Scholar 

  3. Brent, R., Strazdins, P.: Implementation of BLAS Level 3 and LINPACK Benchmark on the AP1000. Fujitsu Scientific and Technical Journal, 5(1):61–70, 1993.

    Google Scholar 

  4. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers — Design Issues and Performance. Technical Report UT CS-95-283, LAPACK Working Note #95, University of Tennessee, 1995.

    Google Scholar 

  5. Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., Whaley, R.C.: A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. Technical Report UT CS-95-292, LAPACK Working Note #100, University of Tennessee, 1995.

    Google Scholar 

  6. Choi, J., Dongarra, J., Walker, D.: Parallel matrix transpose algorithms on distributed memory concurrent computers. In Proceedings of Fourth Symposium on the Frontiers of Massively Parallel Computation (McLean, Virginia), pages 245–252. IEEE Computer Society Press, Los Alamitos, California, 1993. (also LAPACK Working Note #65).

    Google Scholar 

  7. Choi, J., Dongarra, J., Walker, D.: PB-BLAS: A Set of Parallel Block Basic Linear Algebra Subroutines. In Proceedings of the Scalable High Performance Computing Conference, pages 534–541, Knoxville, TN, 1994. IEEE Computer Society Press.

    Google Scholar 

  8. Dongarra, J., Du Croz, J., Duff, I., Hammarling, S.: A Set of Level 3 Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.

    Article  Google Scholar 

  9. Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.: Algorithm 656: An extended Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs. ACM Transactions on Mathematical Software, 14 (1):18–32, 1988.

    Google Scholar 

  10. Dongarra, J., Whaley, R.C.: A User's Guide to the BLACS v1.0. Technical Report UT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.

    Google Scholar 

  11. Elster, A.: Basic Matrix Subprograms for Distributed Memory Systems. In D. Walker and Q. Stout, editors, Proceedings of the Fifth Distributed Memory Computing Conference, pages 311–316. IEEE Press, 1990.

    Google Scholar 

  12. Falgout, R., Skjellum, A., Smith, S., Still, C.: The Multicomputer Toolbox Approach to Concurrent BLAS. submitted to Concurrency: Practice and Experience, 1993. (preprint).

    Google Scholar 

  13. Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International Journal of Supercomputer Applications and High Performance Computing, 8(3–4), 1994.

    Google Scholar 

  14. Koebel, C, Loveman, D., Schreiber, R., Steele, G., Zosel, M.: The High Performance Fortran Handbook. The MIT Press, Cambridge, Massachusetts, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jack Dongarra Kaj Madsen Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., Whaley, R.C. (1996). A proposal for a set of parallel basic linear algebra subprograms. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science. PARA 1995. Lecture Notes in Computer Science, vol 1041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60902-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-60902-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60902-5

  • Online ISBN: 978-3-540-49670-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics