Nothing Special   »   [go: up one dir, main page]

Skip to main content

Separating translates in the plane: Combinatorial bounds and an algorithm

  • Conference paper
  • First Online:
Algorithm Theory — SWAT '94 (SWAT 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 824))

Included in the following conference series:

  • 147 Accesses

Abstract

In this paper, we establish two combinatorial bounds related to the separation problem for sets of n pairwise disjoint translates of convex objects: 1) there exists a line which separates one translate from at least n — co√n translates, for some constant c that depends on the “shape” of the translates and 2) there is a function f such that there exists a line with orientation Θ or f(Θ) which separates one translate from at least ⌈3n⌉/4-4 translates, for any orientation Θ (f is defined only by the “shape” of the translate). We also present an O(n log (n+k)+k) time algorithm for finding a translate which can be separated from the maximum number of translates amongst sets of n pairwise disjoint translates of convex k-gons.

This research was supported by FCAR, FODAR and NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Alon, M. Katchalski, and W. Pulleyblank. Cutting disjoint disks by straight lines. Disc. Comp. Geom., 4:239–243, 1989.

    Google Scholar 

  2. M. Atallah. Some dynamic computational geometry problems. Comp. Math. Appl., 11:1171–1181, 1985.

    Google Scholar 

  3. B. Chazelle, H. Edelsbrunner, M. Gringi, L. J. Guibas, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. In Proc. of the 18th Int. Coll. on Automata, Languages and Programming, pages 661–673, 1991.

    Google Scholar 

  4. J. Czyzowicz, E. Rivera-Campo, and J. Urrutia. A note on separation of convex sets. To appear in Disc. Math.

    Google Scholar 

  5. J. Czyzowicz, E. Rivera-Campo, J. Urrutia, and J. Zaks. Separating convex sets in the plane. In Proc. of the Sec. Can. Conf. on Comp. Geom., pages 50–54, 1990.

    Google Scholar 

  6. J. Czyzowicz, E. Rivera-Campo, J. Urrutia, and J. Zaks. Separating convex sets in the plane. Disc. Comp. Geom., 7:189–195, 1992.

    Google Scholar 

  7. H. Edelsbrunner, H.A. Maurer, F.P. Preparata, A.L. Rosenberg, E. Welzl, and D. Wood. Stabbing line segments. BIT, 22:274–281, 1982.

    Google Scholar 

  8. H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal. In Proc. of the 9th Annual ACM Symp. on Comp. Geom., pages 38–46, 1993.

    Google Scholar 

  9. R. Hope and M. Katchalski. Separating plane convex sets. Math. Scand., 66:44–46, 1990.

    Google Scholar 

  10. M. Katchalski, T. Lewis, and A. Liu. Geometric permutations of disjoint translates of convex sets. Disc. Math., 65:249–259, 1987.

    Google Scholar 

  11. T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms. North-Holland, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erik M. Schmidt Sven Skyum

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J., Everett, H., Robert, JM. (1994). Separating translates in the plane: Combinatorial bounds and an algorithm. In: Schmidt, E.M., Skyum, S. (eds) Algorithm Theory — SWAT '94. SWAT 1994. Lecture Notes in Computer Science, vol 824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58218-5_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-58218-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58218-2

  • Online ISBN: 978-3-540-48577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics