Preview
Unable to display preview. Download preview PDF.
References
S. G. Akl and K. A. Lyons, Parallel Computational Geometry, Prentice-Hall, 1993.
F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable parallel computational geometry for coarse grained multicomputers” in Proc. ACM Symposium on Computational Geometry, 1993, pp. 298–307.
F. Dehne, C. Kenyon, and A. Fabri, “Scalable And Architecture Independent Parallel Geometric Algorithms With High Probability Optimal Time” Technical Report, School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6, 1994.
Grand Challenges: High Performance Computing and Communications. The FY 1992 U.S. Research and Development Program. A Report by the Committee on Physical, Mathematical, and Engineering Sciences. Federal Councel for Science, Engineering, and Technology. To Supplement the U.S. President's Fiscal Year 1992 Budget.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dehne, F. (1994). Scalable parallel computational geometry. In: Cosnard, M., Ferreira, A., Peters, J. (eds) Parallel and Distributed Computing Theory and Practice. CFCP 1994. Lecture Notes in Computer Science, vol 805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58078-6_11
Download citation
DOI: https://doi.org/10.1007/3-540-58078-6_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58078-2
Online ISBN: 978-3-540-48435-6
eBook Packages: Springer Book Archive