Nothing Special   »   [go: up one dir, main page]

Skip to main content

Location of the largest empty rectangle among arbitrary obstacles

  • Algorithms
  • Conference paper
  • First Online:
Foundation of Software Technology and Theoretical Computer Science (FSTTCS 1994)

Abstract

This paper outlines the following generalization of the classical maximal-empty-rectangle (MER) problem: given n arbitrarily-oriented non-intersecting line segments of finite length on a rectangular floor, locate an empty isothetic rectangle of maximum area. Thus, the earlier restriction on isotheticity of the obstacles is relaxed. Based on the wellknown technique of matrix searching, a novel algorithm of time complexity O(nlog2 n) and space complexity O(n), is proposed. Next, the technique is extended to handle the following two related open problems: locating the largest isothetic MER (i) inside an arbitrary simple polygon and (ii) amidst a set of arbitrary polygonal obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Naamad, D. T. Lee and W. L. Hsu, On the maximum empty rectangle problem, Discrete Applied Mathematics, vol. 8, pp. 267–277, 1984.

    Google Scholar 

  2. M. J. Atallah and G. N. Frederickson, A note on finding a maximum empty rectangle, Discrete Applied Mathematics, vol. 13, pp. 87–91, 1986.

    Google Scholar 

  3. M. Orlowski, A new algorithm for the largest empty rectangle problem, Algorithmica, vol. 5, pp. 65–73, 1990.

    Google Scholar 

  4. M. J. Atallah and S. R. Kosaraju, An efficient algorithm for maxdominance, with applications, Algorithmica, vol. 4, pp. 221–236, 1989.

    Google Scholar 

  5. B. Chazelle, R. L. Drysdale, and D. T. Lee, Computing the largest empty rectangle, SIAM J. Computing, Vol. 15, pp. 300–315, 1986.

    Google Scholar 

  6. A. Aggarwal and S. Suri, Fast algorithm for computing the largest empty rectangle, Proc. 3rd Annual ACM Symposium on Computational Geometry, pp. 278–290, 1987.

    Google Scholar 

  7. S. C. Nandy, B. B. Bhattacharya and S. Ray, Efficient algorithms for identifying all maximal isothetic empty rectangles in VLSI layout design, Proc. FST & TCS — 10, Lecture Notes in Computer Science, vol. 437, Springer Verlag, pp. 255–269, 1990.

    Google Scholar 

  8. S. C. Nandy and B. B. Bhattacharya, Maximal empty cuboids among points and blocks, submitted for publication, March 1994.

    Google Scholar 

  9. A. Aggarwal and M. Klawe, Applications of generalized matrix searching to geometric algorithms, Discrete Applied Mathematics, vol. 27, pp. 3–23, 1990.

    Google Scholar 

  10. S. C. Nandy, A. Sinha and B. B. Bhattacharya, Location of the largest empty rectangle among arbitrary obstacles, Technical Report P&E/E/CG-2, Electronics Unit, Indian Statistical Institute, Calcutta — 700 035, India, June 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. S. Thiagarajan

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nandy, S.C., Sinha, A., Bhattacharya, B.B. (1994). Location of the largest empty rectangle among arbitrary obstacles. In: Thiagarajan, P.S. (eds) Foundation of Software Technology and Theoretical Computer Science. FSTTCS 1994. Lecture Notes in Computer Science, vol 880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58715-2_122

Download citation

  • DOI: https://doi.org/10.1007/3-540-58715-2_122

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58715-6

  • Online ISBN: 978-3-540-49054-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics