Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effects of Occam's razor in evolving Sigma-Pi neural nets

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN III (PPSN 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 866))

Included in the following conference series:

  • 166 Accesses

Abstract

Several evolutionary algorithms make use of hierarchical representations of variable size rather than linear strings of fixed length. Variable complexity of the structures provides an additional representational power which may widen the application domain of evolutionary algorithms. The price for this is, however, that the search space is open-ended and solutions may grow to arbitrarily large size. In this paper we study the effects of structural complexity of the solutions on their generalization performance by analyzing the fitness landscape of sigma-pi neural networks. The analysis suggests that smaller networks achieve, on average, better generalization accuracy than larger ones, thus confirming the usefulness of Occam's razor. A simple method for implementing the Occam's razor principle is described and shown to be effective in improving the generalization accuracy without limiting their learning capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. S. Abu-Mostafa: The Vapnik-Chervonenkis dimension: Information versus complexity in learning. Neural Computation 1, 312–317 (1989)

    Google Scholar 

  2. T. Bäck and H.-P. Schwefel: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1, 1–23 (1993)

    Google Scholar 

  3. R. Durbin, D. E. Rumelhart: Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Computation 1, 133–142 (1989)

    Google Scholar 

  4. C. L. Giles, T. Maxwell: Learning, invariance, and generalization in high-order neural networks. Applied Optics 26, 4972–4978 (1987)

    Google Scholar 

  5. D. E. Goldberg: Genetic Algorithms in Search, Optimization & Machine Learning. Addison Wesley, 1989

    Google Scholar 

  6. F. Gruau: Genetic synthesis of Boolean neural networks with a cell rewriting developmental process. Tech. Rep., Laboratoire de l'Informatique du Parallélisme, 1992

    Google Scholar 

  7. S. A. Harp, T. Samad, A. Guha: Towards the genetic synthesis of neural networks. In: D. Schaffer (ed.): Proceedings of the Third International Conference on Genetic Algorithms (ICGA-89). Morgan Kaufmann, 1985, pp. 360–369

    Google Scholar 

  8. H. Iba, T. Kurita, H. de Garis, T. Sato: System identification using structured genetic algorithm. In: S. Forrest (ed.): Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93). Morgan Kaufmann, 1993, pp. 279–286

    Google Scholar 

  9. H. Kargupta, R. E. Smith: System identification with evolving polynomial networks. In: R. Belew, L. Booker (eds.): Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA-91). Morgan Kaufmann, 1991, pp. 370–376

    Google Scholar 

  10. K. E. Kinnear Jr.: Generality and difficulty in genetic programming: Evolving a sort. In: S. Forrest (ed.): Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93). Morgan Kaufmann, 1993, pp. 287–294

    Google Scholar 

  11. H. Kitano: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    Google Scholar 

  12. J. R. Koza: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992

    Google Scholar 

  13. H. Mühlenbein: Evolutionary algorithms — Theory and applications. In: E. H. L. Aarts, J. K. Lenstra (eds.): Local Search in Combinatorial Optimization. Wiley, 1993

    Google Scholar 

  14. H. Mühlenbein, D. Schierkamp-Voosen: Predictive models for the breeder genetic algorithm I: Continuous parameter optimization. Evolutionary Computation 1, 25–49 (1993)

    Google Scholar 

  15. I. Rechenberg: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog, 1973

    Google Scholar 

  16. J. Rissanen: Stochastic complexity and modeling. The Annuls of Statistics 14, 1080–1100 (1986)

    Google Scholar 

  17. J. D. Schaffer: Multiple objective optimization with vector evaluated genetic algorithm. In: J. D. Schaffer (ed.): Proceedings of the International Conference on Genetic Algorithms and Their Applications. Erlbaum Associates, 1985, pp. 93–100

    Google Scholar 

  18. W. A. Tackett: Genetic programming for feature discovery and image discrimination. In: S. Forrest (ed.): Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93). Morgan Kaufmann, 1993, pp. 303–309

    Google Scholar 

  19. D. Whitley, T. Starkweather, C. Bogart: Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Computing 14, 347–361 (1990)

    Article  Google Scholar 

  20. B. T. Zhang, H. Mühlenbein: Genetic programming of minimal neural nets using Occam's razor. In: S. Forrest (ed.): Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93). Morgan Kaufmann, 1993, pp. 342–349

    Google Scholar 

  21. B. T. Zhang, H. Mühlenbein: Evolving optimal neural networks using genetic algorithms with Occam's razor. Complex Systems (1994)

    Google Scholar 

  22. B. T. Zhang, H. Mühlenbein: Synthesis of sigma-pi neural networks by the breeder genetic programming. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI-94) New York: IEEE Press, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuval Davidor Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, BT. (1994). Effects of Occam's razor in evolving Sigma-Pi neural nets. In: Davidor, Y., Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature — PPSN III. PPSN 1994. Lecture Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58484-6_289

Download citation

  • DOI: https://doi.org/10.1007/3-540-58484-6_289

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58484-1

  • Online ISBN: 978-3-540-49001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics