Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic lander: An experiment in accurate neuro-genetic control

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN III (PPSN 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 866))

Included in the following conference series:

  • 217 Accesses

Abstract

The control problem of soft-landing a toy lunar module simulation is investigated in the context of neural nets. While traditional supervised back-propagation training is inappropriate for lack of training exemplars, genetic algorithms allow a controller to be evolved without difficulty: Evolution is a form of unsupervised learning. A novelty introduced in this paper is the presentation of additional renormalized inputs to the net; experiments indicate that the presence of such inputs allows precision of control to be attained faster, when learning time is measured by the number of generations for which the GA must run to attain a certain mean performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. J. Angeline, G. M. Saunders and J. B. Pollack, An evolutionnary algorithm that construct recurrent neural networks. To appear in IEEE Transactions on Neural Networks.

    Google Scholar 

  2. D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison Wesley, 1989.

    Google Scholar 

  3. S. A. Harp and T. Samad, Genetic synthesis of neural network architecture, in Handbook of Genetic Algorithms, L. Davis Ed., Van Nostrand Reinhold, New York, 1991.

    Google Scholar 

  4. R. Hecht-Nielsen, Neurocomputing, Addison Wesley, 1990.

    Google Scholar 

  5. J. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Harbor, 1975.

    Google Scholar 

  6. Empirical studies on the speed of convergence of neural network training using genetic algorithms. In Proceedings of Eight National Conference on Artificial Intelligence, AAAI-90, Vol. 2, pp 789–795, Boston, MA, 29 July–3 Aug 1990. MIT Press, Cambridge, MA.

    Google Scholar 

  7. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Springer Verlag 1992.

    Google Scholar 

  8. D. Nguyen, B. Widrow, The truck Backer Upper: An example of self learning in neural networks, in Neural networks for Control, W. T. Miller III, R. S. Sutton, P. J. Werbos eds, The MIT Press, Cambridge MA, 1990.

    Google Scholar 

  9. N. J. Radcliffe, Equivalence Class Analysis of Genetic Algorithms, in Complex Systems 5, pp 183–205, 1991.

    Google Scholar 

  10. D. E. Rumelhart, J. L. McClelland, Parallel Distributed Processing — Exploration in the micro structure of cognition, MIT Press, Cambridge MA, 1986.

    Google Scholar 

  11. J. D. Schaffer, R. A. Caruana and L. J. Eshelman, Using genetic search to exploit the emergent behaviour of neural networks, Physica D 42 (1990), pp244–248.

    Google Scholar 

  12. M. Schoenauer, E.Ronald Neuro Genetic Truck Backer-Upper Controller, in IEEE World Conference on Computational Intelligence, Orlando 1994.

    Google Scholar 

  13. M. Schoenauer, E.Ronald Genetic Extensions of Neural Net Learning: Transfer Functions and Renormalisation Coefficients, in submitted to Artificial Evolution 94, Toulouse 1994.

    Google Scholar 

  14. Steve C. Suddarth, The symbolic-neural method for creating models and control behaviours from examples. Ph.D. dissertation. University of Washington. 1988.

    Google Scholar 

  15. Xin Yao, A Review of Evolutionary Artificial Neural Networks, in International Journal of Intelligent Systems 8, pp 539–567, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuval Davidor Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ronald, E., Schoenauer, M. (1994). Genetic lander: An experiment in accurate neuro-genetic control. In: Davidor, Y., Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature — PPSN III. PPSN 1994. Lecture Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58484-6_288

Download citation

  • DOI: https://doi.org/10.1007/3-540-58484-6_288

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58484-1

  • Online ISBN: 978-3-540-49001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics