Abstract
Spatial information in autonomous robot tasks is uncertain due to measurement errors, the dynamic nature of the world, and an incompletely known environment. We present a probabilistic spatial data model capable of describing relevant spatial data, such as object location, shape, composition, and other parameters, in the presence of uncertainty. Uncertain spatial information is modeled through continuous probability distributions on values of attributes. The data model is designed to support our visual tracking and navigation prototype.
This work is partially supported by the Paul Ivanier Center for Robotics and Production Management, Ben-Gurion University.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Agrawal and N. Gehani. ODE (object database and environment): The language and the data model. In ACM SIGMOD Intl. Conf. on Management of Data, pages 36–45, 1989.
N. Ayache. Artificial Vision for Mobile Robots. MIT Press, 1991.
D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational data model. In Proc. of the Intl. Conf. on Extending Database Technology, volume 416 of Lecture Notes in Computer Science, pages 60–74. Springer-Verlag, 1990.
S. Dutta. Qualitative spatial reasoning: A semi-quantitative approach using fuzzy logic. In A. Buchmann et al., editors, Design and Implementation of Large Spatial Databases, volume 409 of Lecture Notes in Computer Science, pages 345–364. Springer-Verlag, 1989.
A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Computer, pages 46–57, 1989.
E. Gelenbe and G. Hebrail. A probability model of uncertainty in databases. In Proc. IEEE Data Engineering Conf., 1986.
Y. Hel-Or and M. Werman. Absolute orientation from uncertain point data: A unified approach. In Proceedings of the CVPR Conference, 1992.
H. Jagadish and L. O'Gorman. An object model for image understanding. IEEE Computer, pages 33–41, Dec. 1989.
P. Kahn, L. Kitchen, and E. M. Riseman. A fast line finder for vision-guided robot navigation. IEEE Transaction on PAMI, 12–11:1098–1102, November 1990.
D. Kriegman, T. Binford, and T. Sumanaweera. Generic models for robot navigation. In Proc. DARPA Image Understanding Workshop, pages 453–460, 1988.
L. Matthies, R. Szeliski, and T. Kanade. Kaiman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision, 3–3:209–238, 1989.
J. Orenstein and F. Manola. PROBE: Spatial data modeling and query processing in an image database application. IEEE Trans. on Software Engineering, 14(5):611–629, May 1988.
N. Roussopoulos, C. Faloustsos, and T. Sellis. An efficient pictorial database system for SQL. IEEE Trans. on Software Engineering, 14(5):639–650, May 1988.
A. Wolf. How to fit geo-objects into databases — an extensibility approach. In Proc. of the Intl. Conf. on Extending Database Technology, volume 580 of Lecture Notes in Computer Science. Springer-Verlag, Mar. 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kornatzky, Y., Shimony, S.E. (1993). A probabilistic spatial data model. In: Mařík, V., Lažanský, J., Wagner, R.R. (eds) Database and Expert Systems Applications. DEXA 1993. Lecture Notes in Computer Science, vol 720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57234-1_30
Download citation
DOI: https://doi.org/10.1007/3-540-57234-1_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57234-3
Online ISBN: 978-3-540-47982-6
eBook Packages: Springer Book Archive