Nothing Special   »   [go: up one dir, main page]

Skip to main content

A probabilistic spatial data model

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 720))

Included in the following conference series:

Abstract

Spatial information in autonomous robot tasks is uncertain due to measurement errors, the dynamic nature of the world, and an incompletely known environment. We present a probabilistic spatial data model capable of describing relevant spatial data, such as object location, shape, composition, and other parameters, in the presence of uncertainty. Uncertain spatial information is modeled through continuous probability distributions on values of attributes. The data model is designed to support our visual tracking and navigation prototype.

This work is partially supported by the Paul Ivanier Center for Robotics and Production Management, Ben-Gurion University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Agrawal and N. Gehani. ODE (object database and environment): The language and the data model. In ACM SIGMOD Intl. Conf. on Management of Data, pages 36–45, 1989.

    Google Scholar 

  2. N. Ayache. Artificial Vision for Mobile Robots. MIT Press, 1991.

    Google Scholar 

  3. D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational data model. In Proc. of the Intl. Conf. on Extending Database Technology, volume 416 of Lecture Notes in Computer Science, pages 60–74. Springer-Verlag, 1990.

    Google Scholar 

  4. S. Dutta. Qualitative spatial reasoning: A semi-quantitative approach using fuzzy logic. In A. Buchmann et al., editors, Design and Implementation of Large Spatial Databases, volume 409 of Lecture Notes in Computer Science, pages 345–364. Springer-Verlag, 1989.

    Google Scholar 

  5. A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Computer, pages 46–57, 1989.

    Google Scholar 

  6. E. Gelenbe and G. Hebrail. A probability model of uncertainty in databases. In Proc. IEEE Data Engineering Conf., 1986.

    Google Scholar 

  7. Y. Hel-Or and M. Werman. Absolute orientation from uncertain point data: A unified approach. In Proceedings of the CVPR Conference, 1992.

    Google Scholar 

  8. H. Jagadish and L. O'Gorman. An object model for image understanding. IEEE Computer, pages 33–41, Dec. 1989.

    Google Scholar 

  9. P. Kahn, L. Kitchen, and E. M. Riseman. A fast line finder for vision-guided robot navigation. IEEE Transaction on PAMI, 12–11:1098–1102, November 1990.

    Google Scholar 

  10. D. Kriegman, T. Binford, and T. Sumanaweera. Generic models for robot navigation. In Proc. DARPA Image Understanding Workshop, pages 453–460, 1988.

    Google Scholar 

  11. L. Matthies, R. Szeliski, and T. Kanade. Kaiman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision, 3–3:209–238, 1989.

    Article  Google Scholar 

  12. J. Orenstein and F. Manola. PROBE: Spatial data modeling and query processing in an image database application. IEEE Trans. on Software Engineering, 14(5):611–629, May 1988.

    Article  Google Scholar 

  13. N. Roussopoulos, C. Faloustsos, and T. Sellis. An efficient pictorial database system for SQL. IEEE Trans. on Software Engineering, 14(5):639–650, May 1988.

    Article  Google Scholar 

  14. A. Wolf. How to fit geo-objects into databases — an extensibility approach. In Proc. of the Intl. Conf. on Extending Database Technology, volume 580 of Lecture Notes in Computer Science. Springer-Verlag, Mar. 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vladimír Mařík Jiří Lažanský Roland R. Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kornatzky, Y., Shimony, S.E. (1993). A probabilistic spatial data model. In: Mařík, V., Lažanský, J., Wagner, R.R. (eds) Database and Expert Systems Applications. DEXA 1993. Lecture Notes in Computer Science, vol 720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57234-1_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-57234-1_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57234-3

  • Online ISBN: 978-3-540-47982-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics