Abstract
This paper deals with the theory of qth-order fractal dimensions and its application to texture analysis. In particular, a novel algorithm for estimating such dimensions is proposed and its use in digital-image processing is described. Results on classical Brodatz textures are reported.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A.P.Pentland Fractal-based description of natural scenes IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 661–674, 1984.
J.M.Keller and S.Chen Texture description and segmentation through fractal geometry Computer Vision, Graphics, and Image Processing, vol. 45, pp. 150–166, 1989.
U.Mussigman Texture analysis using fractal dimensions in: Fractal Geometry and Computer Graphics (J.L.Encarnacao, H.O.Peitgen, G.Sakas, G.Englert, Eds.), pp. 217–230, Springer Verlag, Berlin, 1990.
B.B.Mandelbrot The Fractal Geometry of Nature Freeman, San Francisco, 1982.
J.Feder Fractals Plenum Press, New York, 1988.
R.Voss Random fractals: characterization and measurement in: Scaling Phenomena in Disordered Systems, R.Pynn and A.Skjeltorp, Eds., Plenum Press, New York, 1986.
S.Fioravanti, D.D.Giusto, and G.Vernazza Analysis of the behaviour of the multifractality spectrum function UG-DIBE, Technical Report 92-014, 1992.
N.Otsu Karhunen-Loeve line fitting and a linearity measure Proc. 7th Int. Conf. on Pattern Recognition, pp. 486–489, August 1984.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fioravanti, S., Giusto, D.D. (1993). Texture recognition by the q-th order fractal analysis. In: Chetverikov, D., Kropatsch, W.G. (eds) Computer Analysis of Images and Patterns. CAIP 1993. Lecture Notes in Computer Science, vol 719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57233-3_38
Download citation
DOI: https://doi.org/10.1007/3-540-57233-3_38
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57233-6
Online ISBN: 978-3-540-47980-2
eBook Packages: Springer Book Archive