Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal embedding of complete binary trees into lines and grids

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 570))

Included in the following conference series:

Abstract

We consider several graph embedding problems which have applications in parallel and distributed computing and which have been unsolved so far. Our major result is that the complete binary tree can be embedded into the square grid of the same size with almost optimal dilation (up to a very small factor). To achieve this, we first state an embedding of the complete binary tree into the line with optimal dilation.

The work of these authors was supported by grant Mo 285/4-1 from the German Research Association (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.J. Atallah, S.R. Kosaraju, ”Optimal simulations between mesh-connected arrays of processors”, Journal of the ACM, vol. 35 (1988), pp. 635–650.

    Google Scholar 

  2. R. Aleliunas, A.L. Rosenberg, ”On Embedding Rectangular Grids in Square Grids”, IEEE Transactions on Computers, vol. C-31 (1982), pp. 907–913.

    Google Scholar 

  3. P.Z. Chinn, J. Chvátalová, A.K. Dewedney, and N.E. Gibbs. The bandwidth problem for graphs and matrices — a survey. Journal of Graph Theory, 6:223–254, 1982.

    Google Scholar 

  4. F.R.K. Chung, ”Labelings of Graphs”, in Selected Topics in Graph Theory III, edited by L.W. Beineke and R.J. Wilson, Academic Press, (1988) pp. 151–168.

    Google Scholar 

  5. J.A. Ellis, ”Embedding Rectangular Grids into Square Grids”, Proceedings of the 3rd Aegean Workshop on Computing (AWOC): VLSI Algorithms and Architectures (1988), LNCS 319, pp. 181–190.

    Google Scholar 

  6. M.J. Fischer, M.S. Paterson, ”Optimal Tree Layout”, Proceedings of the 12th ACM Symposium on the Theory of Computing (1980), pp. 177–189.

    Google Scholar 

  7. M.R. Garey, D.S. Johnson, ”Computers and Intractability”, W.H. Freeman, New York, 1979.

    Google Scholar 

  8. D. Gordon, ”Efficient Embeddings of Binary Trees in VLSI Arrays”, IEEE Transactions on Computers, vol. C-36 (1987), pp. 1009–1018.

    Google Scholar 

  9. J. Haralambides, F. Makedon, B. Monien, ”Approximation Algorithms for the Bandwidth Minimization Problem for Caterpillar Graphs”, Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing, (1990), pp. 301–307.

    Google Scholar 

  10. B. Monien, ”The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete”, SIAM J. Alg. and Discrete Methods, 7 (1986), pp. 505–512.

    Google Scholar 

  11. B. Monien, ”Simulating Binary Trees on X-trees”, Proceedings of the 3rd A CM Symposium on Parallel Algorithms and Architectures (1991).

    Google Scholar 

  12. B. Monien, I.H. Sudborough, ”Embedding one Interconnection Network in Another”, Computing Suppl. 7 (1990), pp. 257–282.

    Google Scholar 

  13. mS. Paterson, W.L. Ruzzo, L. Snyder, ”Bounds on minimax edge length for complete binary trees”, Proceedings of the 13th ACM Symposium on the Theory of Computing (1981), pp. 293–299.

    Google Scholar 

  14. A.L. Rosenberg, ”Graph embeddings 1988: Recent breakthroughs, new directions”, Proceedings of the 3rd Aegean Workshop on Computing (AWOC): VLSI Algorithms and Architectures (1988), LNCS 319, pp. 160–169.

    Google Scholar 

  15. W.L. Ruzzo, L. Snyder, ”Minimum Edge Length Planar Embeddings of Trees”, in Kung, Sproull, Steele: VLSI Systems and Computations, Computer Science Press (1981), pp. 119–123.

    Google Scholar 

  16. A.D. Singh, H.Y. Youn, ”Near Optimal Embedding of Binary Tree Architectures in VLSI”, Proceedings of the 8th International Conference on Distributed Computing Systems (1988), pp. 86–93.

    Google Scholar 

  17. J.D. Ullman, ”Computational Aspects of VLSI”, Computer Science Press, 1984.

    Google Scholar 

  18. P. Zienicke, ”Embedding of Treelike Graphs into 2-dimensional Meshes”, Proceedings of the 16th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 90).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gunther Schmidt Rudolf Berghammer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heckmann, R., Klasing, R., Monien, B., Unger, W. (1992). Optimal embedding of complete binary trees into lines and grids. In: Schmidt, G., Berghammer, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 1991. Lecture Notes in Computer Science, vol 570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55121-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-55121-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55121-8

  • Online ISBN: 978-3-540-46735-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics