Abstract
The average case analysis of algorithms can avail itself of the development of synthetic methods in combinatorial enumerations and in asymptotic analysis. Symbolic methods in combinatorial analysis permit to express directly the counting generating functions of wide classes of combinatorial structures. Asymptotic methods based on complex analysis permit to extract directly coefficients of structurally complicated generating functions without a need for explicit coefficient expansions.
Three major groups of problems relative to algebraic equations, differential equations, and iteration are presented. The range of applications includes formal languages, tree enumerations, comparison-based searching and sorting, digital structures, hashing and occupancy problems.
These analytic approaches allow an abstract discussion of asymptotic properties of combinatorial structures and schemas while opening the way for automatic analysis of whole classes of combinatorial algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, L., Casas, R., Fages, F., Torrecillas, A., and Zimmermann, P. Average case analysis of unification algorithms. In Proceedings of STACS'91 (1991), C. Choffrut and M. Jantzen, Eds., Lecture Notes in Computer Science, pp. 196–213.
Albert, L., and Fages, F. Average case analysis of the Rete pattern-matching algorithm. In Automata, Languages and Programming (1988), T. Lepistö and A. Salomaa, Eds., vol. 317 of Lecture Notes in Computer Science, Springer Verlag. Proceedings of 15th ICALP Colloquium, Tempere, Finland, July 1938.
Aldous, D., and Shields, P. A diffusion limit for a class of randomly growing binary trees. Probability Theory and Related Fields 79, 4 (1988), 509–542.
Bender, E. A. Central and local limit theorems applied to asymptotic enumeration. Journal of Combinatorial Theory 15 (1973), 91–111.
Bender, E. A. Asymptotic methods in enumeration. SIAM Review 16, 4 (Oct. 1974), 485–515.
Bender, E. A., and Richmond, L. B. Central and local limit theorems applied to asymptotic enumeration II: Multivariate generating functions. Journal of Combinatorial Theory, Series A 34 (1983), 255–265.
Berstel, J., and Reutenauer, C.Les séries rationnelles et leurs langages. Masson, Paris, 1984.
Canfield, E. R. Central and local limit theorems for the coefficients of polynomials of binomial type. Journal of Combinatorial Theory, Series A 23 (1977), 275–290.
Casas, R., Diaz, J., and Martinez, C. Statistics on random trees. In Automata, Languages, and Programming (1991), J. Leach Albert et al., Ed., vol. 510 of Lecture Notes in Computer Science, pp. 186–203, Proceedings of the 18th ICALP Conference, Madrid, July 1991.
Casas, R., Fernández Camacho, M.-I., and Steyaert, J.-M. Algebraic simplification in computer algebra: An analysis of bottom-up algorithms. Theoretical Computer Science 74 74 (1990), 273–298.
Choppy, C., Kaplan, S., and Soria, M. Complexity analysis of term rewriting systems. Theoretical Computer Science 67 (1989), 261–282.
Compton, K. J. A logical approach to asymptotic combinatorics. I. First order properties. Advances in Mathematics 65 (1987), 65–96.
Compton, K. J. A logical approach to asymptotic combinatorics. II. Second-order properties. Journal of Combinatorial Theory, Series A 50 (1987), 110–131.
Compton, K. J. 0−1 laws in logic and combinatorics. In Proceedings NATO Advanced Study Institute on Algorithms and Order (Dordrecht, 1988), I. Rival, Ed., Reidel, pp. 353–383.
Comtet, L.Advanced Combinatorics. Reidel, Dordrecht, 1974.
De Bruijn, N. G. Asymptotic Methods in Analysis. Dover, 1981. A reprint of the third North Holland edition, 1970 (first edition, 1958).
De Bruijn, N. G., Knuth, D. E., and Rice, S. O. The average height of planted plane trees. In Graph Theory and Computing (1972), R. C. Read, Ed., Academic Press, pp. 15–22.
Devroye, L. Branching processes in the analysis of the heights of trees. Acta Informatica 24 (1987), 277–298.
Dienes, P.The Taylor Series. Dover, New York, 1958. A reprint of the first Oxford University Press edition, 1931.
Fagin, R., Nievergelt, J., Pippenger, N., and Strong, R. Extendible hashing: A fast access method for dynamic files. A.C.M. Trans. Database Syst. 4 (1979), 315–344.
Fayolle, G., Flajolet, P., and Hofri, M. On a functional equation arising in the analysis of a protocol for a multiaccess broadcast channel. Advances in Applied Probability 18 (1986), 441–472.
Flajolet, P.Analyse d'algorithmes de manipulation d'arbres et de fichiers, vol. 34–35 of Cahiers du Bureau Universitaire de Recherche Opérationnelle. Université Pierre et Marie Curie, Paris, 1981. 209 pages.
Flajolet, P. Analytic models and ambiguity of context-free languages. Theoretical Computer Science 49 (1987), 283–309.
Flajolet, P. Mathematical methods in the analysis of algorithms and data structures. In Trends in Theoretical Computer Science, E. Börger, Ed. Computer Science Press, Rockville, Maryland, 1988, ch. 6, pp. 225–304. (Lecture Notes for A Graduate Course in Computation Theory, Udine, 1984).
Flajolet, P., and Golin, M. Mellin transforms and asymptotics: The mergesort recurrence. Report, Institut National de Recherche en Informatique et en Automatique, January 1992. 11 pages.
Flajolet, P., Gonnet, G., Puech, C., and Robson, J. M. The analysis of multidimensional searching in quad-trees. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, 1991), SIAM Press, pp. 100–109.
Flajolet, P., and Martin, G. N. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31, 2 (Oct. 1985), 182–209.
Flajolet, P., and Odlyzko, A. M. Random mapping statistics. In Advances in Cryptology (1990), J.-J. Quisquater and J. Vandewalle, Eds., vol. 434 of Lecture Notes in Computer Science, Springer Verlag, pp. 329–354. Proceedings of Eurocrypt'89, Houtalen, Belgium, April 1989.
Flajolet, P., and Odlyzko, A. M. Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3, 2 (1990), 216–240.
Flajolet, P., and Puech, C. Partial match retrieval of multidimensional data. Journal of the ACM 33, 2 (1986), 371–407.
Flajolet, P., and Richmond, B. Generalized digital trees and their difference-differential equations, Apr. 1991. 15 pages. INRIA Research Report 1423. To appear in Random Structures and Algorithms.
Flajolet, P., Salvy, B., and Zimmermann, P. Automatic average-case analysis of algorithms. Theoretical Computer Science, Series A 79, 1 (February 1991), 37–109.
Flajolet, P., and Sedgewick, R. Digital search trees revisited. SIAM Journal on Computing 15, 3 (Aug. 1986), 748–767.
Flajolet, P., Sipala, P., and Steyaert, J.-M. Analytic variations on the common subexpression problem. In Automata, Languages, and Programming (1990), M. S. Paterson, Ed., vol. 443 of Lecture Notes in Computer Science, pp. 220–234. Proceedings of the 17th ICALP Conference, Warwick, July 1990.
Flajolet, P., and Soria, M. Gaussian limiting distributions for the number of components in combinatorial structures. Journal of Combinatorial Theory, Series A 53 (1990), 165–182.
Flajolet, P., and Steyaert, J.-M. A complexity calculus for classes of recursive search programs over tree structures. In Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (1981), IEEE Computer Society Press, pp. 386–393.
Flajolet, P., and Steyaert, J.-M. A complexity calculus for recursive tree algorithms. Mathematical Systems Theory 19 (1987), 301–331.
Gamkrelidze, R. V., Ed. Analysis I, Integral Representations and Asymptotic Methods, vol. 13 of Encyclopedia of Mathematical Sciences. Springer Verlag, 1989.
Gardy, D. Bases de données et allocations aléatoires: Quelques analyses de performance Doctorate in sciences, Université de Paris-Sud, 1989.
Gardy, D. Méthode de col et lois limites en analyse combinatoire. Theoretical Computer Science 92, 2 (1992), 261–280.
Gessel, I. M. Symmetric functions and P-recursiveness. Journal of Combinatorial Theory, Series A 53 (1990), 257–285.
Gessel, I. M., and Stanley, R. P. Algebraic enumeration. Preprint, 1989. To appear as a chapter in the Handbook of Combinatorics, R. Graham, M. Grötschel and L. Lovász, Eds.
Goulden, I. P., and Jackson, D. M.Combinatorial Enumeration. John Wiley, New York, 1983.
Graham, R., Knuth, D., and Patashnik, O. Concrete Mathematics Addison Wesley, 1989.
Greene, D. H. Labelled formal languages and their uses. PhD thesis, Stanford University, June 1983.
Greene, D. H., and Knuth, D. E.Mathematics for the analysis of algorithms. Birkhauser, Boston, 1981.
Harary, F., and Palmer, E. M. Graphical Enumeration. Academic Press, 1973.
Henrici, P.Applied and Computational Complex Analysis. John Wiley, New York, 1977. 3 volumes.
Hoshi, M., and Flajolet, P. Page usage in quadtree indexes. Report 1434, Institut National de Recherche en Informatique et en Automatique, May 1991. 19 pages. Accepted for publication in BIT.
Joyal, A. Une théorie combinatoire des séries formelles. Advances in Mathematics 42, 1 (1981), 1–82.
Kemp, R.Fundamentals of the Average Case Analysis of Particular Algorithms. Wiley-Teubner, Stuttgart, 1984.
Kirschenhofer, P., and Prodinger, H. On some applications of formulæ of Ramanujan in the analysis of algorithms. Mathematika 38 (1991), 14–33.
Kirschenhofer, P., Prodinger, H., and Szpankowski, W. On the variance of the external path length in a symmetric digital trie. Discrete Applied Mathematics 25 (1989), 129–143.
Knuth, D. E. The Art of Computer Programming, vol. 1: Fundamental Algorithms. Addison-Wesley, 1968. Second edition, 1973.
Knuth, D. E. The Art of Computer Programming, vol. 3: Sorting and Searching. Addison-Wesley, 1973.
Knuth, D. E. The average time for carry propagation. Indagationes Mathematicae 40 (1978), 238–242.
Knuth, D. E., and Schönhage, A. The expected linearity of a simple equivalence algorithm. Theoretical Computer Science 6 (1978), 281–315.
Lifschitz, V., and Pittel, B. The number of increasing subsequences of the random permutation. Journal of Combinatorial Theory, Series A 31 (1981), 1–20.
Lipshitz, L. The diagonal of a D-finite power series is D-finite. J. Algebra 113 (1988), 373–378.
Lipshitz, L.D-finite power series. J. Algebra 122 (1989), 353–373.
Louchard, G. The Brownian motion: a neglected tool for the complexity analysis of sorted table manipulation. RAIRO Theoretical Informatics 17 (1983).
Massazza, P. Holonomic functions and their relation to linearly constrained languages. Manuscript, 1991. 14 pages. Based on the authors's Ph. D. Thesis, University of Milan, 1991.
McKay, B. D. The asymptotic numbers of regular tournaments, eulerian digraphs and eulerian oriented graphs. Comhinatorica 10, 4 (1990), 367–377.
Meir, A., and Moon, J. W. On the altitude of nodes in random trees. Canadian Journal of Mathematics 30 (1978), 997–1015.
Odlyzko, A. M. Enumeration of strings. In Combinatorial Algorithms on Words (1985), A. Apostolico and Z. Galil, Eds., vol. 12 of NATO Advance Science Institute Series. Series F: Computer and Systems Sciences, Springer Verlag, pp. 205–228.
Odlyzko, A. M. Asymptotic enumeration methods. Preprint, Mar. 1992. To appear as a chapter in the Handbook of Combinatorics,R. Graham, M. Grötschel and L. Lovász, Ed.
Odlyzko, A. M., and Richmond, L. B. Asymptotic expansions for the coefficients of analytic generating functions. Aequationes Mathematicae 28 (1985), 50–63.
Pólya, G., and Read, R. C.Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer Verlag, New York, 1987.
Salvy, B. Asymptotique automatique et fonctions génératrices. Ph. D. thesis, École Polytechnique, 1991.
Sedgewick, R.Algorithms, second ed. Addison-Wesley, Reading, Mass., 1988.
Soria-Cousineau, M.Méthodes d'analyse pour les constructions combinatoires et les algorithmes. Doctorat d'état, Université de Paris-Sud, Orsay, July 1990.
Stanley, R. P. Generating functions. In Studies in Combinatorics, M.A.A. Studies in Mathematics, Vol. 17. (1978), G.-C. Rota, Ed., The Mathematical Association of America, pp. 100–141.
Stanley, R. P. Differentiably finite power series. European Journal of Combinatorics 1 (1980), 175–188.
Stanley, R. P. Enumerative Combinatorics, vol. I. Wadsworth & Brooks/Cole, 1986.
Steyaert, J.-M. Structure et complexité des algorithmes. Doctorat d'état, Université Paris VII, Apr. 1984.
Steyaert, J.-M., and Flajolet, P. Patterns and pattern-matching in trees: an analysis. Information and Control 58, 1–3 (July 1983), 19–58.
Szpankowski, W. Patricia tries again revisited. Journal of the ACM 37, 4 (1990), 691–711.
Titchmarsh, E. C. The Theory of Functions, second ed. Oxford University Press, 1939.
Vitter, J. S., and Flajolet, P. Analysis of algorithms and data structures. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, 1990, ch. 9, pp. 431–524.
Wasow, W. Asymptotic Expansions for Ordinary Differential Equations Dover, 1987. A reprint of the John Wiley edition, 1965.
Wilf, H. S. Generatingfunctionology. Academic Press, 1990.
Wimp, J., and Zeilberger, D. Resurrecting the asymptotics of linear recurrences. Journal of Mathematical Analysis and Applications 111 (1985), 162–176.
Zeilberger, D. A holonomic approach to special functions identities. Journal of Computational and Applied Mathematics 32 (1990), 321–368.
Zimmermann, P.Séries génératrices et analyse automatique d'algorithmes. Thèse de Doctorat, École Polytechnique, Palaiseau, France, 1991.
Zimmermann, P. Analysis of functions with a finite number of return values, Feb. 1992. 12 pages.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Flajolet, P. (1992). Analytic analysis of algorithms. In: Kuich, W. (eds) Automata, Languages and Programming. ICALP 1992. Lecture Notes in Computer Science, vol 623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55719-9_74
Download citation
DOI: https://doi.org/10.1007/3-540-55719-9_74
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55719-7
Online ISBN: 978-3-540-47278-0
eBook Packages: Springer Book Archive