Preview
Unable to display preview. Download preview PDF.
References
H. Barendregt, Introduction to Generalized Type Systems, To appear in Journal of Functional Programming.
Th. Coquand, Une Théorie des Constructions, Thèse de troisième cycle, Université Paris VII, 1985.
Th. Coquand, An analysis of Girard's paradox, Proceedings of Logic in Computer Science, 1986, pp. 227–236.
Th. Coquand, G. Huet, The Calculus of Constructions, Information and Computation, 76, 1988, pp. 95–120.
Th. Coquand. J. Gallier, A Proof of Strong Normalization For the Theory of Constructions Using a Kripke-Like Interpretation, Personal communication.
G. Dowek, L'Indécidabilité du Filtrage du Troisième Ordre dans les Calculs avec Types Dépendants ou Constructeurs de Types (The Undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors), Compte Rendu à l'Académie des Sciences, 1991.
G. Dowek, The Undecidability of Pattern Matching in Polymorphic λ-Calculus, In preparation.
G. Dowek, A Second-Order Pattern Matching Algorithm for the Cube of typed λ-Calculi, Rapport de Recherche INRIA, 1991.
C. M. Elliott, Higher-order Unification with Dependent Function Types, Proceedings of the 3rd International Conference on Rewriting Techniques and Applications, N. Dershowitz (Ed.), Lecture Notes in Computer Science, 355, Springer-Verlag, 1989, pp.121–136.
C. M. Elliott, Extensions and Applications of Higher-order Unification, PhD Thesis, 1990, Carnegie Mellon University, Pittsburgh, Report CMU-CS-90-134.
J. Gallier, On Girard's Candidats de Réductibilité, Logic and Computer Science, P. Odifreddi (Ed.), Academic Press, London, 1990, pp. 123–203.
H. Geuvers, M.J. Nederhof, A Modular Proof of Strong Normalization for the Calculus of Constructions, Catholic University Nijmegen.
J.Y. Girard, Interprétation fonctionnelle et élimination des coupures dans l'arithmétique d'ordre supérieur, Thèse de Doctorat d'État, Université de Paris VII, 1972.
R. Harper, F. Honsell, G. Plotkin, A Framework for Defining Logics, Proceedings of Logic in Computer Science, 1987, pp. 194–204.
G. Huet, A Unification Algorithm for Typed λ-calculus, Theoretical Computer Science, 1, 1975, pp. 27–57.
G. Huet, Résolution d'Équations dans les Langages d'Ordre 1,2, ..., ω, Thèse de Doctorat d'état, Université de Paris VII, 1976.
G. Huet, B. Lang, Proving and Applying Program Transformations Expressed with Second Order Patterns, Acta Informatica, 1978, 11, pp. 31–55.
D.A. Miller, Unification Under a Mixed Prefix, To appear in Journal of Symbolic Computation.
F. Pfenning, Unification and anti-Unification in the Calculus of Constructions, To appear in Proceedings of Logic in Computer Science, 1991.
D. Pym, Proof, Search and Computation in General Logic, PhD thesis, University of Edinburgh. Report CST-69-90 also ECS-LFCS-90-125.
J.A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the Association for Computing Machinery, 12, 1, 1965, pp. 23–41.
A. Salvesen, The Church-Rosser Theorem for LF with β/ν-reduction, Manuscript, University of Edinburgh, 1989.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dowek, G. (1991). A second-order pattern matching algorithm for the cube of typed λ-calculi. In: Tarlecki, A. (eds) Mathematical Foundations of Computer Science 1991. MFCS 1991. Lecture Notes in Computer Science, vol 520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54345-7_58
Download citation
DOI: https://doi.org/10.1007/3-540-54345-7_58
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54345-9
Online ISBN: 978-3-540-47579-8
eBook Packages: Springer Book Archive