Abstract
A difficult diagnosis task is to decide whether to incriminate or to exonerate the components of a system. A parsimonious theory of diagnosis requires doing exoneration. A robust theory of diagnosis must not presume the ways components fail. In order to build both, a parsimonious and robust theory of diagnosis, all the proofs which lead to the conclusion that components are not abnormal must be defeasible. This is a basic motivation to apply non monotonic reasoning to diagnosis problems. A basic issue becomes the choice of an exoneration criterion. Most model-based diagnosis engines exonerate components when there is a lack of evidence that they fail.
This article starts by introducing an alternative exoneration criterion based on the evidence that components possess the desired features defined by their model of correct behavior. Then this article shows how circumscription can be used to formalize this criterion. Next the properties of a Circumscribed Diagnosis Engine, CDE, are explained. As a result this article shows how a Circumscribed Diagnosis Engine enhances the localization of failures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
9 References
R. Davis, W. Hamscher, Model based reasoning: Troubleshooting. AI memo 1059, MIT Cambridge, MA, 1987.
R. Davis, Diagnostic reasoning based on structure and behavior. Artificial Intelligence, Vol 24, 1984, pp 347–402.
J. de Kleer, B.C, Williams, Diagnosing multiple faults. Artificial Intelligence, Vol 32, pp 97–130.
J. de Kleer, B.C, Williams, Diagnosis as identifying consistent modes of behavior. Proceedings of the 9nth National Conference on Artificial Intelligence, AAAI 1989
J. McCarthy, Circumscription, a form of non monotonic reasoning. Artificial Intelligence, Volume 13, pp 27–39.
M.L. Ginsberg, Counterfactuals. Artificial Intelligence, Volume 30, pp 35–80, 1986.
O. Raiman, Diagnosis as a Trial, International Workshop on model based diagnosis, Paris 1989.
R. Reiter, A Theory of Diagnosis. from First Principles. Artificial Intelligence, Volume 32, 1987, pp 57–95.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raiman, O. (1990). A circumscribed diagnosis engine. In: Gottlob, G., Nejdl, W. (eds) Expert Systems in Engineering Principles and Applications. ESE 1990. Lecture Notes in Computer Science, vol 462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53104-1_34
Download citation
DOI: https://doi.org/10.1007/3-540-53104-1_34
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-53104-3
Online ISBN: 978-3-540-46711-3
eBook Packages: Springer Book Archive