Nothing Special   »   [go: up one dir, main page]

Skip to main content

On ground AC-completion

  • Conference paper
  • First Online:
Rewriting Techniques and Applications (RTA 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 488))

Included in the following conference series:

Abstract

We prove that a canonical set of rules for an equational theory defined by a finite set of ground axioms plus the associativity and commutativity of any number of operators must be finite.

As a corollary, we show that ground AC-completion, when using a total AC-simplification ordering and an appropriate control, must terminate.

Using a recent result of Narendran and Rusinowitch (in this volume), this implies that the word problem for such a theory is decidable.

This work is partly supported by the “GRECO de programmation du CNRS” and Basic Research Action COMPASS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In Proc. 1st IEEE Symp. Logic in Computer Science, Cambridge, Mass., pages 346–357, June 1986.

    Google Scholar 

  2. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, volume B, chapter Rewrite Systems, pages 243–309. North-Holland, 1990. J. van Leeuwen ed.

    Google Scholar 

  3. P. W. Goldberg. Ground AC-Completion. Laboratoire de Recherche en informatique, internal report, 1989.

    Google Scholar 

  4. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 2(3):326–336, Sept. 1952.

    Google Scholar 

  5. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM J. Comput., 15(4):1155–1194, 1986.

    Google Scholar 

  6. D. S. Lankford and A. M. Ballantyne. Decision procedures for simple equational theories with commutative-associative axioms: Complete sets of commutative-associative reductions. Research Report Memo ATP-39, Department of Mathematics and Computer Science, University of Texas, Austin, Texas, USA, Aug. 1977.

    Google Scholar 

  7. A. Mal'cev. On homomorphisms of finite groups. Ivano Gosudarstvenni Pedag. Inst. Ucheneye Zap, 18:49–90, 1958.

    Google Scholar 

  8. C. Marché. On AC-termination and ground AC-completion. Research Report 598, Laboratoire de Recherche en Informatique, Université de Paris-Sud, Orsay, France, Oct. 1990.

    Google Scholar 

  9. A. A. Markov. On the impossibility of certain algorithms in the theory of associative systems. Dokl. Akad. Nauk SSSR, 55:587–590, 1947. In Russian, English translation in C.R. Acad. Sci. URSS, 55, 533–586.

    Google Scholar 

  10. J. V. Matijasevic. Simple examples of undecidable associative calculi. Soviet Mathematics (Dokladi), 8(2):555–557, 1967.

    Google Scholar 

  11. G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. J. ACM, 28(2):233–264, Apr. 1981.

    Google Scholar 

  12. E. L. Post. Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic, 12:1–11, 1947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ronald V. Book

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marché, C. (1991). On ground AC-completion. In: Book, R.V. (eds) Rewriting Techniques and Applications. RTA 1991. Lecture Notes in Computer Science, vol 488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53904-2_114

Download citation

  • DOI: https://doi.org/10.1007/3-540-53904-2_114

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53904-9

  • Online ISBN: 978-3-540-46383-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics