Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast algorithm for computing fractal dimensions of image segments

  • Algorithms And Techniques
  • Chapter
  • First Online:
Recent Issues in Pattern Analysis and Recognition

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 399))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, K. C.: Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers & Geosciences 12 (1986) No. 5, pp. 713–722.

    Google Scholar 

  2. Flook, A. G.: The characterization of textured and structured particle profiles by the automated measurement of their fractal dimension. Partikel Technologie Nuernberg 24–26. IX. 1979, pp. 591–600.

    Google Scholar 

  3. Kaandorp, J. A.: Interactive generation of fractal objects. EUROGRAPHICS'87, Elsevier Science Publishers B.V. (North-Holland):1987, pp. 181–197.

    Google Scholar 

  4. Kaye, B. H.: Fractal dimension and signature wave form characterization of fine particle shape. American Laboratory Apr. 1986, pp. 55–63.

    Google Scholar 

  5. Kaye, B. H., Clark, G. G., Leblanc, J. E., Frottier, R. A.: Image analysis procedures for characterizing the fractal dimension of fineparticles. 1st World Congress Particle Technology 16–18.IV.1986, Part 1: Particle Characterization, pp. 17–31.

    Google Scholar 

  6. Keller, J. M., Crownover, R. M., Chen, R. Y.: Characteristics of natural scenes related to the fractal dimension. IEEE Transaction on Pattern Analysis and Machine Intelligence PAMI 9 (1987), No. 5, pp. 621–627.

    Google Scholar 

  7. Mandelbrot, B. B.: The fractal geometry of nature. W.H. Freeman: San Francisco 1982.

    Google Scholar 

  8. Orford, J. D., Whalley, W. B.: The quantitative description of highly irregular sedimentary particles: the use of the fractal dimension, pp. 267–279.

    Google Scholar 

  9. Pentland, A. P.: Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI 6 (1984), No. 6, pp. 661–674.

    Google Scholar 

  10. Rigaut, J. P.: Automated image segmentation by fractal grey tone functions. Gegenbaurs morphologisches Jahrbuch: Leipzig 1988.

    Google Scholar 

  11. Sørensen, P.: Fractals. BYTE, Sept. 1984, pp. 157–172.

    Google Scholar 

  12. Walach, E., Karnin, E., Chevion, D.: On fractal based approach to image coding. SIGNAL PROCESSING III: Theories and Applications, I. T. Young et al. (Eds.), Elsevier Science Publishers B.V. (North-Holland), pp. 731–733.

    Google Scholar 

  13. West, B. J., Goldberger, A. L.: Physiology in fractal dimensions. American Scientist 75 (1987), pp. 354–365.

    Google Scholar 

  14. Zorpette, G.: Fractals: not just another pretty picture. IEEE Spectrum Oct 1988, pp 29–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Virginio Cantoni Reiner Creutzburg Stefano Levialdi G. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creutzburg, R., Ivanov, E. (1989). Fast algorithm for computing fractal dimensions of image segments. In: Cantoni, V., Creutzburg, R., Levialdi, S., Wolf, G. (eds) Recent Issues in Pattern Analysis and Recognition. Lecture Notes in Computer Science, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51815-0_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-51815-0_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51815-0

  • Online ISBN: 978-3-540-46815-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics