Nothing Special   »   [go: up one dir, main page]

Skip to main content

System simulation and the sensitivity of self-stabilization

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1989 (MFCS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 379))

  • 155 Accesses

Abstract

We argue that the important property of self-stabilization is, in principle, unstable across system classes. In particular, we show that, for a wide variety of system classes, there is no simulation that “preserves” or “enforces” self-stabilization.

Extended Abstract

This work was supported in part by U. S. Office of Naval Research Grant No. N00014-86-K-0763 and National Science Foundation Grant No. CCR-8711579.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Brown, M. Gouda, and C. Wu. Token systems that self-stabilize. 1989. IEEE Trans. on Computers, to appear.

    Google Scholar 

  2. J. Burns and J. Pachl. Uniform Self-Stabilizing Rings. Technical Report GIT-ICS-87/33, School of Information and Computer Science, Georgia Institute of Technology, 1987.

    Google Scholar 

  3. F. Bastani, I. Yen, and I. Chen. A class of inherently fault tolerant distributed programs. IEEE Trans. on Software Engineering, 14:1432–1442, 1988.

    Google Scholar 

  4. D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30:323–342, 1983.

    Google Scholar 

  5. H. Carstensen. Decidability questions for fairness in Petri nets. In Proceedings of the 4th Symposium on Theoretical Aspects of Computer Science, pages 396–407, 1987. LNCS 247.

    Google Scholar 

  6. W. Cheney and D. Kincaid. Numerical Mathematics and Computing. Brooks/Cole, Monterey, Cal., 1980.

    Google Scholar 

  7. E. Dijkstra. EWD391 Self-stabilization in spite of distributed control. 1973. Reprinted in Selected Writings on Computing: A Personal Perspective, Springer-Verlag, Berlin, 1982, pp. 41–46.

    Google Scholar 

  8. E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the ACM, 17:643–644, 1974.

    Google Scholar 

  9. E. Emerson and C. Lei. Modalities for model checking: Branching time logic strikes back. Science of Computer Programming, 8:275–306, 1987.

    Google Scholar 

  10. M. Gouda, R. Howell, and L. Rosier. The instability of self-stabilization. In preparation, 1989.

    Google Scholar 

  11. M. Gouda. The Stabilizing Philosopher: Asymmetry by Memory and by Action. Technical Report TR-87-12, Dept. of Computer Sciences, University of Texas at Austin, 1987.

    Google Scholar 

  12. C. Hoare. Communicating sequential processes. Communications of the ACM, 21:666–677, 1978.

    Google Scholar 

  13. J. Hopcroft and J. Pansiot. On the reachability problem for 5-dimensional vector addition systems. Theoret. Comp. Sci., 8:135–159, 1979.

    Google Scholar 

  14. R. Howell, L. Rosier, and H. Yen. A taxonomy of fairness and temporal logic problems for Petri nets. In Proceedings of the 13th Symposium on Mathematical Foundations of Computer Science, pages 351–359, 1988. To appear in Theoret. Comp. Sci.

    Google Scholar 

  15. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Mass., 1979.

    Google Scholar 

  16. O. Ibarra, S. Kim, and S. Moran. Sequential machine characterizations of trellis and cellular automata and applications. SIAM J. Computing, 14:426–447, 1985.

    Google Scholar 

  17. R.M. Keller. Vector Replacement Systems: A Formalism for Modelling Asynchronous Systems. TR 117, Princeton University, CSL, 1972.

    Google Scholar 

  18. R. Karp and R. Miller. Parallel program schemata. J. of Computer and System Sciences, 3:147–195, 1969.

    Google Scholar 

  19. D. König. Theorie der Endlichen und Unendlichen Graphen. Akademische Verlagsgesellschaft, Leipzig, 1936.

    Google Scholar 

  20. S. Kosaraju. On some open problems in the theory of cellular automata. IEEE Trans. on Computers, C-23:561–565, 1974.

    Google Scholar 

  21. L. Lamport. The mutual exclusion problem: Part II — Statement and solutions. JACM, 33:327–348, 1986.

    Google Scholar 

  22. D. Lehman and M. Rabin. On the advantages of free choice: A symmetric and fully distributed solution of the dining philosophers problem. In Proceedings of the 8th Annual ACM Symposium on Principles of Programming Languages, pages 133–138, 1981.

    Google Scholar 

  23. N. Multari. Self-stabilizing Protocols. PhD thesis, Dept. of Computer Sciences, University of Texas at Austin, 1989. In preparation.

    Google Scholar 

  24. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans. on Programming Languages and Syst., 4:455–495, 1982.

    Google Scholar 

  25. C. Özveren, A. Willsky, and P. Antsaklis. Stability and stabilizability of discrete event dynamic systems. MIT LIDS Publication, LIDS-P-1853, 1989.

    Google Scholar 

  26. J. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

    Google Scholar 

  27. W. Reisig. Petri Nets: An Introduction. Springer-Verlag, Heidelberg, 1985.

    Google Scholar 

  28. A. Smith. Cellular automata complexity tradeoffs. Information and Control, 18:466–482, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antoni Kreczmar Grazyna Mirkowska

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gouda, M.G., Howell, R.R., Rosier, L.E. (1989). System simulation and the sensitivity of self-stabilization. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_72

Download citation

  • DOI: https://doi.org/10.1007/3-540-51486-4_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51486-2

  • Online ISBN: 978-3-540-48176-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics