Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Parallel Strongly Implicit Algorithm for Solving of Diffusion Equations

  • Conference paper
  • First Online:
Parallel Computation (ACPC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1557))

Abstract

We present a parallel algorithm for the solution of partial differential equations representing a 3-D diffusion process of the underground water by a finite difference method. The algorithm belongs to a class of the incomplete LU factorization methods, where corresponding system of linear algebraic equations is solved by a quasi LU decomposition in every time step. A code realizing the algorithm was written in Fortran 90 programming language using the MPI message passing interface system and was tested on a SGI Origin 2000 parallel computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofhaus, J., van de Velde, E.F.: Alternating-direction line-relaxation methods on multicomputers. SIAM J. Sci. Comput., Vol 27, No. 2, March 1996 454–478

    Article  Google Scholar 

  2. Ortega, J.M.: Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New York and London, (1988)

    MATH  Google Scholar 

  3. Benzi, M., Tuma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM Journal of Scientific Computing 19, (1998) 968–994

    Article  MATH  MathSciNet  Google Scholar 

  4. Chow, E., Saad, Y.: Approximate inverse preconditioners via sparse-sparse iterations. SIAM Journal of Scientific Computing 19, (1998) 995–1023

    Article  MATH  MathSciNet  Google Scholar 

  5. Gould, N.I.M., Scott, J.A.: Sparse approximate-inverse preconditioners using normminimization techniques. SIAM Journal of Scientific Computing 19, (1998) 605–625

    Article  MATH  MathSciNet  Google Scholar 

  6. Bruno, J., Cappello, P.: Implementing the 3-D alternating direction method on the hypercube. Journal of Parallel and Distributed Computing 23, (1994) 411–417

    Article  Google Scholar 

  7. Tsompanopoulou, P., Vavalis, E.: ADI methods for cubic spline discretizations of elliptic PDEs. SIAM Journal of Scientific Computing 19, (1998) 341–363

    Article  MATH  MathSciNet  Google Scholar 

  8. Walters, R.W., Dwoyer, D.L., Hassan, H.A.: A strongly implicit procedure for the compressible Navier-Stokes equations. AIAA Journal, Vol. 24, No. 1, (1985) 6–12

    Article  MathSciNet  Google Scholar 

  9. Alden, J.A., Booth J., Compton, R.G., Dryfe, R.A.W., Sanders, G.H.W.: Diffusional mass transport to microband electrodes of practical geometries: A simulation study using the strongly implicit procedure. Journal of Electroanalytical Chemistry 389, (1995) 4554

    Article  Google Scholar 

  10. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal., Vol. 5, No. 3, (1968)530–558

    Article  MATH  MathSciNet  Google Scholar 

  11. Technical Overview of the Origin Family, http://www.sgi.com/Products/hardware/servers/technology/

  12. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference, The MIT Press, Cambridge, Massachusetts, London,England (1996)

    Google Scholar 

  13. Hluchy, L., Godlevsky A., Halada, L., Dobrucky, M., Tran, D.V.: Ground water flow modeling in distributed environment. Proc. of DAPSY’98, Budapest, (Sept. 27–29, 1998) 155–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halada, L., Lucká, M. (1999). A Parallel Strongly Implicit Algorithm for Solving of Diffusion Equations. In: Zinterhof, P., Vajteršic, M., Uhl, A. (eds) Parallel Computation. ACPC 1999. Lecture Notes in Computer Science, vol 1557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49164-3_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-49164-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65641-8

  • Online ISBN: 978-3-540-49164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics