Nothing Special   »   [go: up one dir, main page]

Skip to main content

Disjunctive Logic Program = Horn Program + Control Program

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1489))

Included in the following conference series:

  • 240 Accesses

Abstract

This paper presents an alternative view on propositional disjunctive logic program: Disjunctive program = Control program + Horn program. For this we introduce a program transformation which transforms a disjunctive logic program into a Horn program and a so called control program. The control program consists of only disjunctions of new propositional atoms and controls the “execution” of the Horn program. The relationship between original and transformed programs is established by using circumscription. Based on this relationship a new minimal model reasoning approach is developed. Due to the transformation it is straightforward to incorporate SLD-resolution into the proof procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chandrabose Aravindan. An abductive framework for negation in disjunctive logic programming. In J. J. Alferes, L. M. Pereira, and E. Orlowska, editors, Proceedings of Joint European workshop on Logics in AI, number 1126 in Lecture Notes in Artificial Intelligence, pages 252–267. Springer-Verlag, 1996. A related report is available on the web from <http://www.unikoblenz.de/~arvind/papers/>.

  2. Peter Baumgartner and Ulrich Furbach. PROTEIN: A PROver with a Theory Extension I nterface. In A. Bundy, editor, Automated Deduction-CADE-12, volume 814 of Lecture Notes in Artificial Intelligence, pages 769–773. Springer, 1994. Available in the WWW, URL: http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

  3. Peter Baumgartner and Ulrich Furbach. Calculi for Disjunctive Logic Programming. In Jan Maluszynski, editor, Logic Programming-Proceedings of the 1997 International Symposium, Port Jefferson, New York, 1997. The MIT Press.

    Google Scholar 

  4. Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux. In Proc. JELIA 96, number 1126 in Lecture Notes in Artificial Intelligence. European Workshop on Logic in AI, Springer, 1996.

    Google Scholar 

  5. Peter Baumgartner, Ulrich Furbach, and Frieder Stolzenburg. Computing Answers with Model Elimination. Artificial Intelligence, 90(1–2):135–176, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  6. Matthew L. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence, 39:209–230, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Gelfond, H. Przymusinska, and T. Przymusinski. On the relationship between circumscription and negation as failure. Artificial Intelligence, 38:75–94, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Inoue, M. Koshimura, and R. Hasegawa. Embedding negation as failure into a model generation theorem prover. In The 11th International Conference on Automated Deduction, pages 400–415, Saratoga Springs, NY, USA, June 1992. Springer-Verlag.

    Google Scholar 

  9. V. Lifschitz. Computing circumscription. In Proceedings of the 9th International Joint Conference on Artificial Intelligence, pages 121–127, Los Angeles, California, USA, August 1985. Morgan Kaufmann Publishers.

    Google Scholar 

  10. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second extended edition, 1987.

    Google Scholar 

  11. Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of disjunctive logic programming. MIT Press, 1992.

    Google Scholar 

  12. D. Loveland. Near-Horn Prolog and Beyond. Journal of Automated Reasoning, 7:1–26, 1991.

    Article  MATH  Google Scholar 

  13. D. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMO with RElevance. Journal of Automated Reasoning, 14:325–351, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. Wenjin Lu. Minimal model generation based on e-hyper tableau. In Cristopher Habel Gerhard Brewka and Bernhard Nebel, editors, Proceedings of KI’97, number 1303 in Lecture Notes in Artificial Intelligence, pages 99–110. Springer-Verlag, 1997.

    Google Scholar 

  15. Rainer Manthey and François Bry. SATCHMO: a theorem prover implemented in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings of the 9 th Conference on Automated Deduction, Argonne, Illinois, May 1988, volume 310 of Lecture Notes in Computer Science, pages 415–434. Springer, 1988.

    Google Scholar 

  16. J. McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  17. Jack Minker. On indefinite databases and the closed world assumption. In Lecture Notes in Computer Science 138, pages 292–308. Springer-Verlag, 1982.

    Google Scholar 

  18. I. Niemelä. A tableau calculus for minimal model reasoning. In Proceedings of the Fifth Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 278–294, Terrasini, Italy, May 1996. Springer-Verlag.

    Google Scholar 

  19. A. Nerode, R.T. Ng, and V.S. Subrahmanian. Computing circumscriptive databases: I. theory and algorithms. Information and Computation, 116:58–80, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Olivetti. A tableaux and sequent calculus for minimal entailment. Journal of Automated Reasoning, 9:99–139, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. T.C. Przymusinski. An algorithm to compute circumscription. Artificial Intelligence, 38:49–73, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Yahya and L. J. Henschen. Deduction in non-horn databases. Journal of Automated Reasoning, 1(2):141–160, 1985.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, W., Furbach, U. (1998). Disjunctive Logic Program = Horn Program + Control Program. In: Dix, J., del Cerro, L.F., Furbach, U. (eds) Logics in Artificial Intelligence. JELIA 1998. Lecture Notes in Computer Science(), vol 1489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49545-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-49545-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65141-3

  • Online ISBN: 978-3-540-49545-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics