Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Adaptive Finite Element Method for Large Scale Image Processing

  • Conference paper
  • First Online:
Scale-Space Theories in Computer Vision (Scale-Space 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1682))

Included in the following conference series:

Abstract

Nonlinear diffusion methods have proved to be powerful methods in the processing of 2D and 3D images. They allow a denoising and smoothing of image intensities while retaining and enhancing edges. On the other hand, compression is an important topic in image process- ing as well. Here a method is presented which combines the two aspects in an efficient way. It is based on a semi-implicit Finite Element im- plementation of nonlinear diffusion. Error indicators guide a successive coarsening process. This leads to locally coarse grids in areas of resulting smooth image intensity, while enhanced edges are still resolved on fine grid levels. Special emphasis has been put on algorithmical aspects such as storage requirements and efficiency. Furthermore, a new nonlinear anisotropic diffusion method for vector field visualization is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. T. Acton. Multigrid anisotropic diffusion. IEEE Trans. Image Proc., 7:280–291, 1998.

    Article  Google Scholar 

  2. L. Alvarez and J. Esclarin. Image quantization using reaction-diffusion equations. SIAM J. Appl. Math., 57:153–175, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bänsch and K. Mikula. A coarsening finite element strategy in image selective smoothing. Computing and Visualization in Science, 1:53–63, 1997.

    Article  MATH  Google Scholar 

  4. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners. Ug-a flexible software toolbox for solving partial differential equations. Comput. Visual. Sci., 1:27–40, 1997.

    Article  MATH  Google Scholar 

  5. R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996.

    MATH  MathSciNet  Google Scholar 

  6. Bornemann, F. and Erdmann, B. and Kornhuber, R. Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng., 36, No.18:3187–3203, 1993.

    Article  Google Scholar 

  7. J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. of Comp., 55:1–22, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Cabral and L. Leedom. Imaging vector fields using line integral convolution. In J. T. Kajiya, editor, Computer Graphics (SIGGRAPH’ 93 Proceedings), volume 27, pages 263–272, Aug. 1993.

    Google Scholar 

  9. F. Catté, P. L. Lions, J. M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29:182–193, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. G.-H. Cottet and L. Germain. Image processing through reaction combined with nonlinear diffusion. Math. Comp., 61:659–673, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, and T. Walsh. HP90: A general and flexible fortran 90 hp FE code. Technical Report 97-17, Seminar für Angewandte Mathematik, ETH Zürich, 1997.

    Google Scholar 

  12. T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In Proceedings of the Volume Visualization’ 99 workshop, 1999.

    Google Scholar 

  13. J. Kačur and K. Mikula. Solution of nonlinear diffusion appearing in image smoothing ansd edge detection. Appl. Numer. Math., 17 (1):47–59, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawohl, B. and Kutev, N. Maximum and comparison principle for one-dimensional anisotropic diffusion. Math. Ann., 311 (1):107–123, 1998.

    Article  MathSciNet  Google Scholar 

  15. N. Max and B. Becker. Flow visualization using moving textures. In Proceedings of the ICASE/LaRC Symposium on Time Varying Data, NASA Conference Publication 3321, pages 77–87, 1996.

    Google Scholar 

  16. M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolutional scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 4 (4), 1998.

    Google Scholar 

  17. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In IEEE Computer Society Workshop on Computer Vision, 1987.

    Google Scholar 

  18. M. Rumpf. Recent numerical methods-a challenge for efficient visualization. IEEE Transactions on Visualization and Computer Graphics, 15:43–58, 1999.

    Google Scholar 

  19. C. Schnörr. A study of a convex variational approach for image segmentation and feature extraction. J. Math. Imaging and Vision, 8:271–292, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  20. H.-W. Shen and D. L. Kao. Uflic: A line integral convolution algorithm for visualizing unsteady flows. In Proceedings Visualization’ 97, pages 317–322, 1997.

    Google Scholar 

  21. J. J. van Wijk. Spot noise-texture synthesis for data visualization. In T. W. Sederberg, editor, Computer Graphics (SIGGRAPH’ 91 Proceedings), volume 25, pages 309–318, July 1991.

    Google Scholar 

  22. R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math., 50:67–83, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Weickart. Anisotropic diffusion in image processing. Teubner, 1998.

    Google Scholar 

  24. J. Weickert, B. M. ter Haar Romeny, and Viergever. Efficient and reliable schemes for nonlinear diffusion. IEEE Trans. Image Proc., 7:398–410, 1998.

    Article  Google Scholar 

  25. Weickert, J. Foundations and applications of nonlinear anisotropic diffusion filtering. Z. Angew. Math. Mech., 76:283–286, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Preußer, T., Rumpf, M. (1999). An Adaptive Finite Element Method for Large Scale Image Processing. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-48236-9_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66498-7

  • Online ISBN: 978-3-540-48236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics