Abstract
Nonlinear diffusion methods have proved to be powerful methods in the processing of 2D and 3D images. They allow a denoising and smoothing of image intensities while retaining and enhancing edges. On the other hand, compression is an important topic in image process- ing as well. Here a method is presented which combines the two aspects in an efficient way. It is based on a semi-implicit Finite Element im- plementation of nonlinear diffusion. Error indicators guide a successive coarsening process. This leads to locally coarse grids in areas of resulting smooth image intensity, while enhanced edges are still resolved on fine grid levels. Special emphasis has been put on algorithmical aspects such as storage requirements and efficiency. Furthermore, a new nonlinear anisotropic diffusion method for vector field visualization is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. T. Acton. Multigrid anisotropic diffusion. IEEE Trans. Image Proc., 7:280–291, 1998.
L. Alvarez and J. Esclarin. Image quantization using reaction-diffusion equations. SIAM J. Appl. Math., 57:153–175, 1997.
E. Bänsch and K. Mikula. A coarsening finite element strategy in image selective smoothing. Computing and Visualization in Science, 1:53–63, 1997.
P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners. Ug-a flexible software toolbox for solving partial differential equations. Comput. Visual. Sci., 1:27–40, 1997.
R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996.
Bornemann, F. and Erdmann, B. and Kornhuber, R. Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng., 36, No.18:3187–3203, 1993.
J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. of Comp., 55:1–22, 1990.
B. Cabral and L. Leedom. Imaging vector fields using line integral convolution. In J. T. Kajiya, editor, Computer Graphics (SIGGRAPH’ 93 Proceedings), volume 27, pages 263–272, Aug. 1993.
F. Catté, P. L. Lions, J. M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29:182–193, 1992.
G.-H. Cottet and L. Germain. Image processing through reaction combined with nonlinear diffusion. Math. Comp., 61:659–673, 1993.
L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, and T. Walsh. HP90: A general and flexible fortran 90 hp FE code. Technical Report 97-17, Seminar für Angewandte Mathematik, ETH Zürich, 1997.
T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In Proceedings of the Volume Visualization’ 99 workshop, 1999.
J. Kačur and K. Mikula. Solution of nonlinear diffusion appearing in image smoothing ansd edge detection. Appl. Numer. Math., 17 (1):47–59, 1995.
Kawohl, B. and Kutev, N. Maximum and comparison principle for one-dimensional anisotropic diffusion. Math. Ann., 311 (1):107–123, 1998.
N. Max and B. Becker. Flow visualization using moving textures. In Proceedings of the ICASE/LaRC Symposium on Time Varying Data, NASA Conference Publication 3321, pages 77–87, 1996.
M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolutional scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 4 (4), 1998.
P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In IEEE Computer Society Workshop on Computer Vision, 1987.
M. Rumpf. Recent numerical methods-a challenge for efficient visualization. IEEE Transactions on Visualization and Computer Graphics, 15:43–58, 1999.
C. Schnörr. A study of a convex variational approach for image segmentation and feature extraction. J. Math. Imaging and Vision, 8:271–292, 1998.
H.-W. Shen and D. L. Kao. Uflic: A line integral convolution algorithm for visualizing unsteady flows. In Proceedings Visualization’ 97, pages 317–322, 1997.
J. J. van Wijk. Spot noise-texture synthesis for data visualization. In T. W. Sederberg, editor, Computer Graphics (SIGGRAPH’ 91 Proceedings), volume 25, pages 309–318, July 1991.
R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math., 50:67–83, 1994.
J. Weickart. Anisotropic diffusion in image processing. Teubner, 1998.
J. Weickert, B. M. ter Haar Romeny, and Viergever. Efficient and reliable schemes for nonlinear diffusion. IEEE Trans. Image Proc., 7:398–410, 1998.
Weickert, J. Foundations and applications of nonlinear anisotropic diffusion filtering. Z. Angew. Math. Mech., 76:283–286, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Preußer, T., Rumpf, M. (1999). An Adaptive Finite Element Method for Large Scale Image Processing. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_20
Download citation
DOI: https://doi.org/10.1007/3-540-48236-9_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66498-7
Online ISBN: 978-3-540-48236-9
eBook Packages: Springer Book Archive