Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Star Problem in Trace Monoids: Reductions Beyond C4

Extended Abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2076))

Included in the following conference series:

Abstract

We deal with the star problem in trace monoids which means to decide whether the iteration of a recognizable trace language is recognizable. We consider trace monoids K n={a 1 b 1}* × … ×{a n b n }*. Our main theorem asserts that the star problem is decidable in a trace monoid M iff it is decidable in the biggest K n submonoid in M. Thus, future research on the star problem can focus on the trace monoids K n. The recently shown decidability equivalence between the star problem and the finite power problem [14] plays a crucial role in the paper.

Partially supported by the PhD program “Specification of discrete processes and systems of processes by operational models and logics” of the DFG.

See author’s homepage for a long version including complete proofs [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Berstel. Transductions and Context-Free Languages. B.G.Teubner, Stutt., 1979.

    Google Scholar 

  2. P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements, vol. 85 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  3. M. Clerbout and M. Latteux. Semi-commutations. Inf. and Comp., 73:59–74, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O.-Informatique Théorique et Applications, 19:21–32, 1985.

    MATH  MathSciNet  Google Scholar 

  5. V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, Vol. 3, Beyond Words, pages 457–534. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  6. V. Diekert and G. Rozenberg, eds., The Book of Traces. World Scient., 1995.

    Google Scholar 

  7. C. Duboc. Mixed product and asynchronous automata. Theoretical Computer Science, 48:183–199, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Fliess. Matrices de Hankel. J. de Math. Pures et Appl., 53:197–224, 1974.

    MathSciNet  MATH  Google Scholar 

  9. P. Gastin, E. Ochmański, A. Petit, and B. Rozoy. Decidability of the star problem in A∗ ×{b}∗. Information Processing Letters, 44(2):65–71, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Ginsburg and E. Spanier. Semigroups, Presburger formulas, and languages. Pacific Journal of Mathematics, 16:285–296, 1966.

    MATH  MathSciNet  Google Scholar 

  11. K. Hashiguchi. A decision procedure for the order of regular events. Theoretical Computer Science, 8:69–72, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Kirsten. A connection between the star problem and the finite power property in trace monoids. In P. van Emde Boas et al., eds., ICALP’99 Proceedings, vol. 1644 of LNCS, pages 473–482. Springer-Verlag, Berlin, 1999.

    Google Scholar 

  13. D. Kirsten. The star problem in trace monoids: Reductions beyond C4. Technical Report MATH-AL-01-2001, Dresden University of Technology, 2001. (submitted)

    Google Scholar 

  14. D. Kirsten and G. Richomme. Decidability equivalence between the star problem and the finite power problem in trace monoids. Theory of Computing Systems, 34:3:193–227, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, 1977.

    Google Scholar 

  16. Y. Métivier. Une condition suffisante de reconnaissabilité dans un monoïde partiellement commutatif. R.A.I.R.O.-Inform. Théor. et Appl., 20:121–127, 1986.

    MATH  Google Scholar 

  17. Y. Métivier and G. Richomme. New results on the star problem in trace monoids. Information and Computation, 119(2):240–251, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Morin. On regular MSC languages and relationships to Mazurkiewicz trace theory. In F. Honsell and M. Miculan, eds., FoSSaCS’2001 Proceedings, vol. 2030 of LNCS, pages 332–346. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  19. E. Ochmański. Recognizable trace languages. Chapter 6 in [6], pages 167–204.

    Google Scholar 

  20. E. Ochmański. Regular Trace Languages (in Polish). PhD thesis, Warszawa, 1984.

    Google Scholar 

  21. E. Ochmański. Notes on a star mystery. Bulletin of the EATCS, 40:252–257, 1990.

    MATH  Google Scholar 

  22. G. Pighizzini. Synthesis of nondeterministic asynchronous automata. In M. Droste and Y. Gurevich, eds., Semantics of Progr. Lang. and Model Theory, number 5 in Algebra, Logic and Appl., p. 109–126. Gordon and Breach Sc. Publ., 1993.

    Google Scholar 

  23. G. Richomme. Some trace monoids where both the star problem and the finite power property problem are decidable. In I. Privara et al., eds., MFCS’94 Proceedings, vol. 841 of LNCS, pages 577–586. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  24. J. Sakarovitch. The“last” decision problem for rational trace languages. In I. Simon, ed., LATIN’92 Proc., vol. 583 of LNCS, p. 460–473. Springer-Verlag, 1992.

    Google Scholar 

  25. I. Simon. Limited subsets of a free monoid. In Proceedings of the 19th IEEE Annual Symposium on Found. of Comp. Sc., pages 143–150. North Carolina Press, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirsten, D. (2001). The Star Problem in Trace Monoids: Reductions Beyond C4. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds) Automata, Languages and Programming. ICALP 2001. Lecture Notes in Computer Science, vol 2076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48224-5_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-48224-5_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42287-7

  • Online ISBN: 978-3-540-48224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics