Nothing Special   »   [go: up one dir, main page]

Skip to main content

Layout Problems on Lattice Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1627))

Included in the following conference series:

Abstract

This work deals with bounds on the cost of layout problems for lattice graphs and random lattice graphs. Our main result in this paper is a convergence theorem for the optimal cost of the Minimum Linear Arrangement problem and the Minimum Sum Cut problem, for the case where the underlying graph is obtained through a subcritical site percolation process. This result can be viewed as an analogue of the Beardwood, Halton and Hammersley theorem for the Euclidian TSP. Finally we estimate empirically the value for the constant in the mentioned theorem.

This research was partially supported by ESPRIT LTR Project no. 20244 — ALCOM-IT, CICYT Project TIC97-1475-CE, and CIRIT project 1997SGR-00366.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment problem with applications to dense graphs arrangements. In 37th IEEE Symposium on Foundations of Computer Science, 1996.

    Google Scholar 

  2. J. Beardwood, J. Halton, and J.M. Hammersley. The shortest path through many points. Proceedings of the Cambridge Philos. Society., 55:299–327, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  3. K.L. Chung. A Course in Probability Theory. Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. J. Díaz, M. D. Penrose, J. Petit, and M. Serna. Linear orderings of random geometric graphs. Technical report, Departament de Llenguatges i Sistemes Informàtics, UPC, http://www.lsi.upc.es/~jpetit/Publications, 1999.

  5. J. Díaz. The δ-operator. In L. Budach, editor, Fundamentals of Computation Theory, pages 105–111. Akademie-Verlag, 1979.

    Google Scholar 

  6. N. Dunford and J. Schwartz. Linear Operators. Part I: General Theory. Interscience Publisher., New York, 1958.

    Google Scholar 

  7. S. Even and Y. Shiloach. NP-completeness of several arrangements problems. Technical report, TR-43 The Technion, Haifa, 1978.

    Google Scholar 

  8. G. Grimmett. Percolation. (2nd edition). Springer-Verlag, Heidelberg, 1999.

    MATH  Google Scholar 

  9. G. Mitchison and R. Durbin. Optimal numberings of an n x n array. SIAM Journal on Discrete Mathematics, 7(4):571–582, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  10. D.O. Muradyan and T.E. Piliposjan. Minimal numberings of vertices of a rectangular lattice. Akad. Nauk. Armjan. SRR, 1(70):21–27, 1980. In Russian.

    MathSciNet  Google Scholar 

  11. K. Nakano. Linear layouts of generalized hypercubes. In J. van Leewen, editor, Graph-theoretic concepts in computer science, volume 790 of Lecture Notes in Computer Science, pages 364–375. Springer-Verlag, 1993.

    Google Scholar 

  12. C. H. Papadimitriou and M. Sideri. The bisection width of grid graphs. In First ACM-SIAM Symp. on Discrete Algorithms., pages 405–410, San Francisco, 1990.

    Google Scholar 

  13. M.D. Penrose. Vertex ordering and partition problems for random spatial graphs. Technical report, University of Durham, 1999.

    Google Scholar 

  14. J. Petit i Silvestre. Combining Spectral Sequencing with Simulated Annealing for the MINLA Problem: Sequential and Parallel Heuristics. Technical Report LSI-97-46-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, 1997.

    Google Scholar 

  15. J. Petit i Silvestre. Approximation Heuristics and Benchmarkings for the MINLA Problem. In Roberto Battiti and Alan A Bertossi, editors, Alex —98 — Building bridges between theory and applications, http://www.lsi.upc.es/~jpetit/MinLA/Benchmark, February 1998. Universitá di Trento.

  16. J.M. Steele. Probability theory and Combinatorial Optimization. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics., 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Penrose, M.D., Petit, J., Serna, M. (1999). Layout Problems on Lattice Graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano, Si., Tokuyama, T. (eds) Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48686-0_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-48686-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66200-6

  • Online ISBN: 978-3-540-48686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics