Nothing Special   »   [go: up one dir, main page]

Skip to main content

Theory of 2-3 Heaps

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1627))

Included in the following conference series:

  • 1125 Accesses

Abstract

As an alternative to the Fibonacci heap, we design a new data structure called a 2-3 heap, which supports m decrease-key and insert operations, and n delete-min operations in O(m + n log n) time. The merit of the 2—3 heap is that it is conceptually simpler and easier to implement. The new data structure will have a wide application in graph algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adel'son-Vel'skii, G.M, and Y.M. Landis, An algorithm for the organization of information, Soviet Math. Dokl. 3 (1962) 1259–1262.

    Google Scholar 

  2. Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley (1974).

    Google Scholar 

  3. Ahuja, K., K. Melhorn, J.B. Orlin, and R.E. Tarjan, Faster algorithms for the shortest path problem, Jour. ACM, 37 (1990) 213–223.

    Article  MATH  Google Scholar 

  4. Bondy, J.A. and U.S.R. Murty, Graph Theory with Applications, Macmillan Press (1976).

    Google Scholar 

  5. Dijkstra, E.W., A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  6. Fredman, M.L. and R,E, Tarjan, Fibonacci heaps and their uses in inproved network optimization algorithms, Jour. ACM 34 (1987) 596–615

    Article  MathSciNet  Google Scholar 

  7. Prim, R.C., Shortest connection networks and some generalizations, Bell Sys. Tech. Jour. 36 (1957) 1389–1401.

    Google Scholar 

  8. Vuillemin, J., A data structure for manipulating priority queues, Comm. ACM 21 (1978) 309–314.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takaoka, T. (1999). Theory of 2-3 Heaps. In: Asano, T., Imai, H., Lee, D.T., Nakano, Si., Tokuyama, T. (eds) Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48686-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48686-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66200-6

  • Online ISBN: 978-3-540-48686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics