Nothing Special   »   [go: up one dir, main page]

Skip to main content

Obstacle-Avoiding Euclidean Steiner Trees in the Plane: An Exact Algorithm

  • Chapter
  • First Online:
Algorithm Engineering and Experimentation (ALENEX 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1619))

Included in the following conference series:

Abstract

The first exact algorithm for the obstacle-avoiding Euclidean Steiner tree problem in the plane (in its most general form) is presented. The algorithm uses a two-phase framework — based on the generation and concatenation of full Steiner trees — previously shown to be very successful for the obstacle-free case. Computational results for moderate size problem instances are given; instances with up to 150 terminals have been solved to optimality within a few hours of CPU-time.

Supported partially by the Danish Natural Science Research Council under contract 9701414 (project “Experimental Algorithmics”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Armillotta and G. Mummolo. A Heuristic Algorithm for the Steiner Problem with Obstacles. Technical report, Dipt. di Pregettazione e Produzione Industriale, Univ. degli Studi di Bari, Bari, 1988.

    Google Scholar 

  2. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands, 1992.

    MATH  Google Scholar 

  3. K. Mehlhorn and S. Näher. LEDA-A Platform for Combinatorial and Geometric Computing. Max-Planck-Institut für Informatik, Saarbrücken, Germany, http://www.mpi-sb.mpg.de/LEDA/leda.html, 1996.

    Google Scholar 

  4. J. S. Provan. An Approximation Scheme for Finding Steiner Trees with Obstacles. SIAM Journal on Computing, 17(5):920–934, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. M. Smith, D. T. Lee, and J. S. Liebman. An O(n log n) Heuristic for Steiner Minimal Tree Problems on the Euclidean Metric. Networks, 11:23–29, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. Ph.D. Thesis, Computer Science Dept., The University of Virginia, 1998.

    Google Scholar 

  7. D. M. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Plane Steiner Tree Problems: A Computational Study. In D.-Z. Du, J. M. Smith, and J. H. Rubinstein, editors, Advances in Steiner Trees, Kluwer Academic Publishers, Boston, to appear.

    Google Scholar 

  8. E. Welzl. Constructing the Visibility Graph for n-line Segments in O(n 2) Time. Information Processing Letters, 20:167–171, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane. Networks, 15:323–345, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Winter. Euclidean Steiner Minimal Trees with Obstacles and Steiner Visibility Graphs. Discrete Applied Mathematics, 47:187–206, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Winter and J. M. Smith. Steiner Minimal Trees for Three Points with One Convex Polygonal Obstacle. Annals of Operations Research, 33:577–599, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Improved Exact Algorithm. Networks, 30:149–166, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zachariasen, M., Winter, P. (1999). Obstacle-Avoiding Euclidean Steiner Trees in the Plane: An Exact Algorithm. In: Goodrich, M.T., McGeoch, C.C. (eds) Algorithm Engineering and Experimentation. ALENEX 1999. Lecture Notes in Computer Science, vol 1619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48518-X_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-48518-X_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66227-3

  • Online ISBN: 978-3-540-48518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics