Abstract
A novice search engine user may find searching the web for information difficult and frustrating because she may naturally express search goals rather than the topic keywords search engines need. In this paper, we present GOOSE (goal-oriented search engine), an adaptive search engine interface that uses natural language processing to parse a user’s search goal, and uses “common sense” reasoning to translate this goal into an effective query. For a source of common sense knowledge, we use Open Mind, a knowledge base of approximately 400,000 simple facts such as “If a pet is sick, take it to the veterinarian” garnered from a Web-wide network of contributors. While we cannot be assured of the robustness of the common sense inference, in a substantial number of cases, GOOSE is more likely to satisfy the user’s original search goals than simple keywords or conventional query expansion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Ask Jeeves, Inc..: Ask Jeeves home page. (2002). http://askjeeves.com/.
Belkin, N.J.: Intelligent information retrieval: Whose intelligence? In: ISI’ 96: Proceedings of the Fifth International Symposium for Information Science. Konstanz: Universtaetsver-lag Konstanz. (1996). 25–31.
Klink, S.: Query reformulation with collaborative concept-based expansion. Proceedings of the First International Workshop on Web Document Analysis, Seattle, WA (2001).
Lieberman, H., Liu, H.: Adaptive Linking between Text and Photos Using Common Sense Reasoning. In Proceedings of the 2nd International Conference on Adaptive Hypermedia and Adaptive Web Based Systems, Malaga, Spain (2002).
Minsky, M.: Commonsense-Based Interfaces. Communications of the ACM. Vol. 43, No. 8 (August, 2000), Pages 66–73
Minsky. M.: A Framework for Representing Knowledge. MIT, (1974). Also, In: P.H. Winston (Ed.): The Psychology of Computer Vision., McGraw-Hill, New York, (1975).
Peat, H. J. and Willett, P.: The limitations of term co-occurrence data for query expansion in document retrieval systems. Journal of the ASIS, 42(5), (1991), 378–383.
Singh, P.: The Public Acquisition of Commonsense Knowledge. AAAI Spring Symposium, Stanford University, Palo Alto, CA, (2002).
Shneiderman, B., Byrd, D., and Croft, B.: Sorting out searching: A user-interface framework for text searches, Communications of the ACM 41, 4 (April 1998), 95–98.
Voorhees, E.: Query expansion usin lexical-semantic relations. In Proceedings of ACM SIGIR Intl. Conf. on Research and Development in Information Retrieval. (1994) 61–69.
Xu, J. and Croft, W.B.: Query Expansion Using Local and Global Document Analysis. In Proceedings of the Nineteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, (1996). pp. 4–11.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, H., Lieberman, H., Selker, T. (2002). GOOSE: A Goal-Oriented Search Engine with Commonsense. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds) Adaptive Hypermedia and Adaptive Web-Based Systems. AH 2002. Lecture Notes in Computer Science, vol 2347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47952-X_27
Download citation
DOI: https://doi.org/10.1007/3-540-47952-X_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43737-6
Online ISBN: 978-3-540-47952-9
eBook Packages: Springer Book Archive