Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Preemptive Resource Constrained Scheduling: Polynomial-Time Approximation Schemes

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

  • 1569 Accesses

Abstract

We study resource constrained scheduling problems where the objective is to compute feasible preemptive schedules minimizing the makespan and using no more resources than what are available. We present approximation schemes along with some inapproximibility results showing how the approximability of the problem changes in terms of the number of resources. The results are based on linear programming formulations (though with exponentially many variables) and some interesting connections between resource constrained scheduling and (multi-dimensional, multiple-choice, and cardinality constrained) variants of the classical knapsack problem. In order to prove the results we generalize a method by Grigoriadis et al. for the max-min resource sharing problem to the case with weak approximate block solvers (i.e. with only constant, logarithmic, or even worse approximation ratios). Finally we present applications of the above results in fractional graph coloring and multiprocessor task scheduling.

Supported in part by EU Thematic Network APPOL I + II, Approximation and Online Algorithms, IST-1999-14084 and IST-2001-30012 and by the EU Research Training Network ARACNE, Approximation and Randomized Algorithms in Communication Networks, HPRN-CT-1999-00112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize schedule length, IEEE Transactions on Computers, C-35-5 (1986), 389–393.

    Article  MathSciNet  Google Scholar 

  2. J. Blazewicz, J.K. Lenstra and A.H.G. Rinnooy Kan, Scheduling subject to resource constraints: Classification and Complexity, Discrete Applied Mathematics 5 (1983), 11–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Caprara, H. Kellerer, U. Pferschy and D. Pisinger, Approximation algorithms for knapsack problems with cardinaliy constraints, European Journal of Operational Research 123 (2000), 333–345.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Coffman, M. Garey, D. Johnson and R. Tarjan, Performance bounds for level-oriented two dimensional packing algorithms, SIAM Journal on Computing, 9 (1980), 808–826.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Chekuri and S. Khanna, On multi-dimensional packing problems, Proceedings 10th ACM-SIAM Symposium on Discrete Algorithms (1999), 185–194.

    Google Scholar 

  6. W.F. de la Vega and C.S. Lueker, Bin packing can be solved within 1 + ε in linear time, Combinatorica, 1 (1981), 349–355.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Drozdowski, Scheduling multiprocessor tasks-an overview, European Journal on Operations Research, 94 (1996), 215–230.

    Article  MATH  Google Scholar 

  8. J. Du and J. Leung, Complexity of scheduling parallel task systems, SIAM Journal on Discrete Mathematics, 2 (1989), 473–487.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Erlebach, K. Jansen and E. Seidel, Polynomial-time approximation schemes for geometric graphs, Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (2001), 671–679.

    Google Scholar 

  10. U. Feige and J. Kilian, Zero knowledge and the chromatic number, Journal of Computer and System Sciences, 57 (1998), 187–199.

    Article  MathSciNet  MATH  Google Scholar 

  11. A.M. Frieze and M.R.B. Clarke, Approximation algorithms for the m-dimensional 0-1 knapsack problem, European Journal of Operational Research, 15 (1984), 100–109.

    Article  MathSciNet  MATH  Google Scholar 

  12. M.R. Garey and R.L. Graham, Bounds for multiprocessor scheduling with resource constraints, SIAM Journal on Computing, 4 (1975), 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.R. Garey, R.L. Graham, D.S. Johnson and A.C.-C. Yao, Resource constrained scheduling as generalized bin packing, Journal Combinatorial Theory A, 21 (1976), 251–298.

    MathSciNet  Google Scholar 

  14. S. Gerke and C. McDiarmid, Graph imperfection, unpublished manuscript, 2000.

    Google Scholar 

  15. M.D. Grigoriadis, L.G. Khachiyan, L. Porkolab and J. Villavicencio, Approximate max-min resource sharing for structured concave optimization, SIAM Journal on Optimization, 41 (2001), 1081–1091.

    Article  MathSciNet  Google Scholar 

  16. M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1 (1981), 169–197.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer Verlag, Berlin, 1988.

    Book  MATH  Google Scholar 

  18. K. Jansen and L. Porkolab, Linear-time approximation schemes for scheduling malleable parallel tasks, Algorithmica, 32 (2002), 507–520.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Jansen and L. Porkolab, Preemptive scheduling on dedicated processors: applications of fractional graph coloring Proceedings 25th International Symposium on Mathematical Foundations of Computer Science (2000), LNCS 1893, Springer Verlag, 446–455.

    Google Scholar 

  20. K. Jansen and L. Porkolab, Computing optimal preemptive schedules for parallel tasks: Linear Programming Approaches, Proceedings 11th Annual International Symposium on Algorithms and Computation (2000), LNCS 1969, Springer Verlag, 398–409, and Mathematical Programming, to appear.

    Chapter  Google Scholar 

  21. K. Jansen, Approximate separation with application in fractional coloring and preemptive scheduling, Proceedings 9th International Symposium on Theoretical Aspects of Computer Science, (2002), LNCS, Springer Verlag, to appear.

    Google Scholar 

  22. H. Kellerer and U. Pferschy, A new fully polynomial approximation scheme for the knapsack problem, Proceedings 1st International Workshop on Approximation Algorithms for Combinatorial Optimization (1998), 123–134.

    Google Scholar 

  23. C. Kenyon and E. Remila, Approximate strip packing, Proceedings 37th IEEE Symposium on Foundations of Computer Science (1996), 31–36.

    Google Scholar 

  24. B. Korte and R. Schrader, On the existence of fast approximation schemes, Nonlinear Programming, 4 (1981), 415–437.

    MathSciNet  Google Scholar 

  25. K.L. Krause, V.Y. Shen and H.D. Schwetman, Analysis of several task scheduling algorithms for a model of multiprogramming computer systems, Journal of the ACM, 22 (1975), 522–550 and Errata, Journal of the ACM, 24 (1977), 527.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Lawler, Fast approximation algorithms for knapsack problems, Mathematics of Operations Research, 4 (1979), 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Ludwig and P. Tiwari, Scheduling malleable and nonmalleable parallel tasks, Proceedings 5th ACM-SIAM Symposium on Discrete Algorithms (1994), 167–176.

    Google Scholar 

  28. C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Journal of the ACM, 41 (1994), 960–981.

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Oguz and M.J. Magazine, A polynomial time approximation algorithm for the multidimensional 0-1 knapsack problem, working paper, University of Waterloo, 1980.

    Google Scholar 

  30. T. Matsui, Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs, Proceedings Symposium on Discrete and Compuational Geometry, LNCS 1763 (2000), 194–200.

    Chapter  Google Scholar 

  31. G. Mounie, C. Rapine and D. Trystram, Efficient approximation algorithms for scheduling malleable tasks, Proceedings ACM Symposium on Parallel Algorithms (1999), 23–32.

    Google Scholar 

  32. T. Niessen and J. Kind, The round-up property of the fractional chromatic number for proper circular arc graphs, Journal of Graph Theory, 33 (2000), 256–267.

    Article  MathSciNet  MATH  Google Scholar 

  33. S.A. Plotkin, D.B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional packing and covering problems, Mathematics of Operations Research, 20 (1995), 257–301.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Raghavan, C.D. Thompson, Randomized rounding: a technique for provably good algorithms and algorithmic proofs, Combinatorica 7 (1987), 365–374.

    Article  MathSciNet  MATH  Google Scholar 

  35. E.R. Schreinerman and D.H. Ullman, Fractional graph theory: A rational approach to the theory of graphs, Wiley Interscience Series in Discrete Mathematics, 1997.

    Google Scholar 

  36. P.D. Seymour, Colouring series-parallel graphs, Combinatorica, 10 (1990), 379–392.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Srinivasan, Improved approximation guarantees for packing and covering integer programs, Proceedings 27th ACM Symposium on the Theory of Computing (1995), 268–276.

    Google Scholar 

  38. A. Srivastav and P. Stangier, Algorithmic Chernoff-Hoeffding inequalities in integer programming, Random Structures and Algorithms, 8(1) (1996), 27–58.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Srivastav and P. Stangier, Tight approximations for resource constrained scheduling and bin packing, Discrete Applied Mathematics, 79 (1997), 223–245.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Turek, J. Wolf and P. Yu, Approximate algorithms for scheduling parallelizable tasks, Proceedings 4th ACM Symposium on Parallel Algorithms and Architectures (1992), 323–332.

    Google Scholar 

  41. N.E. Young, Randomized rounding without solving the linear program, Proceedings 6th ACM-SIAM Symposium on Discrete Algorithms (1995), 170–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, K., Porkolab, L. (2002). On Preemptive Resource Constrained Scheduling: Polynomial-Time Approximation Schemes. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics