Nothing Special   »   [go: up one dir, main page]

Skip to main content

Communication and Parallelism Introduction and Elimination in Imperative Concurrent Programs

  • Conference paper
  • First Online:
Static Analysis (SAS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2126))

Included in the following conference series:

Abstract

Transformation rules of imperative concurrent programs, based on congruence and refinement relations between statements, are presented. They introduce and/or eliminate synchronous communication statements and parallelism in these programs. The development is made within a subset of SPL, a good representative of imperative notations for concurrent and reactive programs introduced by Manna and Pnueli. The paper shows that no finite set of transformation rules suffices to eliminate synchronous communication statements from programs involving the concatenation and parallelism operators only. An infinite set is given to suit this purpose, which can be applied recursively. As an important complement for the applications, a collection of tactics, for the acceleration of broader transformations, is described. Tactics apply a sequence of rules to a program with a specific transformation objective. The transformation rules and the tactics could be used in formal design to derive new programs from verified ones, preserving their properties, and avoiding the repetition of verifications for the transformed programs. As an example, the formal parallelization of a non-trivial distributed fast Fourier transform algorithm is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.-J. Back, J. von Wright, Refinement Calculus. A Systematic Introduction. Springer-Verlag 1998.

    Google Scholar 

  2. S. Bensalem, M. Bozga, J.C. Fernandez, L. Ghirvu, Y. Lakhnech, A Transformational Approach for Generating Non-Linear Invariants. In J. Palsberg (Ed.), Static Analysis, Proc. 7th Intl. Symp. SAS 2000, Santa Barbara, CA, USA, June 29–July 1, 2000. LNCS Vol. 1824, Springer, 2000, pp. 58–74.

    Google Scholar 

  3. M. Bertran, F. Alvarez-Cuevas, A. Duran, Communication Extended Abstract Types in the Refinement of Parallel Communicating Processes, in Transformation-Based Reactive Systems Development, LNCS v. 1231, Springer, 1997.

    Google Scholar 

  4. N.S. Bjørner, A. Browne, M. Colón, B. Finkbeiner, Z. Manna, H.B. Sipma, and T.E. Uribe. Verifying Temporal Properties of Reactive Systems: A STeP Tutorial. Formal Methods in System Design, 16, 227–270, June 2000.

    Google Scholar 

  5. N.S. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover, User’s Manual. Technical Report STAN-CS-TR-95-1562, Computer Science Department, Stanford University, November 1995.

    Google Scholar 

  6. S.D. Brookes. ‘Full abstraction for a shared variable parallel language’, Information and Computation, 127(2):145–163, June 1996.

    Google Scholar 

  7. M. Broy, ‘Functional Specification of Time-Sensitive Communicating Systems’, ACM Transactions on Software Engineering and Methodology, 2(1),: 1–46, January 1993.

    Google Scholar 

  8. M. Broy, ‘Refinement of Time’, in M. Bertran and T. Rus (eds.), Transformation-Based Reactive Systems Development, Springer-Verlag, Lecture Notes in Computer Science 1231, 1997, pp. 44–63.

    Google Scholar 

  9. M. Broy, ‘A Logical Basis for Component-Based Systems Engineering’, Tech. Report Inst. fr Informatik, Tech. Univ. Munchen, Germany.

    Google Scholar 

  10. K.M. Chandy and J. Misra, Parallel Program Design, Addison Wesley, 1988.

    Google Scholar 

  11. Wei-Ngan Chin, Sian-Cheng Khoo, Z. Hu, M. Takeidu, Deriving Parallel Codes via Invariants. In J. Palsberg (Ed.), Static Analysis, Proc. 7th Intl. Symp. SAS 2000, Santa Barbara, CA, USA, June 29–July 1, 2000. LNCS Vol. 1824, Springer, 2000, pp. 75–94.

    Google Scholar 

  12. E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press, 1999.

    Google Scholar 

  13. J. Dingel, ‘A Trace-Based Refinement Calculus for Shared-Variable Parallel Programs’, in A.Martin Haeberer (Ed.) Algebraic Methodology and Software Technology, AMAST’98, LNCS 1548, Springer-Verlag, pp. 231–247, 1998.

    Google Scholar 

  14. B. Finkbeiner, Z. Manna, H. Sipma, Deductive Verification of Modular Systems. In Compositionality: The Significant Difference, COMPOS’97, LNCS v. 1536, pp. 239–275, Springer 1998.

    Google Scholar 

  15. M. Gordon, A.J. Milner, Ch. P. Wadsworth, Edinburgh LCF, LNCS v. 78, Springer-Verlag, 1979.

    MATH  Google Scholar 

  16. C.A.R. Hoare, ‘Communicating Sequential Processes’, Communications of ACM, Vol 21, pp 666–677, 1978.

    Article  MATH  Google Scholar 

  17. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, N.J., 1985.

    MATH  Google Scholar 

  18. Gerald Holtzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.

    Google Scholar 

  19. J. Hooman, ‘Extending Hoare Logic to Real-Time’, Formal Aspects of Computing, 6A: 801–825, BCS, 1994.

    Article  Google Scholar 

  20. Y. Kesten, Z. Manna, A. Pnueli, ‘Temporal Verification of Simulation and Refinement’, In REX Symposium A Decade of Concurrency, Lecture Notes in Computer Science 803, pp. 273–346, Springer-Verlag, 1994.

    Google Scholar 

  21. L. Lamport, ‘The Temporal Logic of Actions’, ACM Trans. Progr. Lang. and Sys., 16(3):872–923.

    Google Scholar 

  22. B. Mahony, ‘Using the Refinement Calculus for Dataflow Processes’. Tech. Report 94-32, Soft. Verification Research Centre, University of Queensland, October 94.

    Google Scholar 

  23. Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems. Specification. Springer-Verlag, 1991.

    Google Scholar 

  24. Z. Manna, A. Pnueli, Temporal Verification of Reactive Systems. Safety. Springer-Verlag, 1995.

    Google Scholar 

  25. K.L. McMillan, and D.L. Dill, Symbolic Model Checking: An Approach to the State Explosion Problem, Kluwer Academic, 1993.

    Google Scholar 

  26. R. Milner, A Calculus of Communicating Systems, Springer-Verlag, 1980.

    Google Scholar 

  27. R. Milner, Communication and Concurrency, Prentice-Hall 1989.

    Google Scholar 

  28. M. Muller-Olm, D.A. Schmit, B. Steffen, Model Checking: A Tutorial Introduction. In A Cortesi, G File (Eds.), Static Analysis, Proc. 6th Intl. Symp. SAS’99, Venice, Italy, September 22–24, 1999. LNCS, Vol 1694, Springer, 1999, pp. 330–354.

    Google Scholar 

  29. Wei-Ngan Chin, Sian-Cheng Khoo, Z. Hu, M. Takeidu, Deriving Parallel Codes via Invariants. In J. Palsberg (Ed.), Static Analysis, Proc. 7th Intl. Symp. SAS 2000, Santa Barbara, CA, USA, June 29–July 1, 2000. LNCS Vol. 1824, Springer, 2000, pp. 75–94.

    Google Scholar 

  30. A.V. Oppenheim, R.W. Shafer, Digital Signal Processing, Prentice Hall, N.J., 1975.

    MATH  Google Scholar 

  31. A. Papoulis, Signal Analysis, McGraw-Hill, N.Y., 1977.

    MATH  Google Scholar 

  32. A. Podelski, Model Checking as Constraint Solving. In J. Palsberg (Ed.), Static Analysis, Proc. 7th Intl. Symp. SAS 2000, Santa Barbara, CA, USA, June 29–July 1, 2000. LNCS Vol. 1824, Springer, 2000, pp. 22–37.

    Google Scholar 

  33. L.R. Rabiner, B. Gold, Theory and Application of Digital Signal processing, Prentice Hall, N.J., 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertran, M., Babot, F., Climent, A., Nicolau, M. (2001). Communication and Parallelism Introduction and Elimination in Imperative Concurrent Programs. In: Cousot, P. (eds) Static Analysis. SAS 2001. Lecture Notes in Computer Science, vol 2126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47764-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-47764-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42314-0

  • Online ISBN: 978-3-540-47764-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics