Abstract
Some secret sharing schemes can be used with only certain algebraic structures (for example fields). Group independent linear threshold sharing (GILTS) refers to at out of n linear threshold secret sharing scheme that can be used with any finite abelian group. Although group independent secret sharing schemes have long existed, here we formally introduce the definition of group independent linear threshold sharing. Using tools developed by [18], we develop some new necessary conditions for a GILTS. In addition, we develop lower bounds concerning the amount of randomness required within a GILTS.
This work was partially funded by NSF grant CCR-9508528
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
W. Adkins and S. Weintrab. Algebra, an approach via module theory. Springer-Verlag, NY, 1992.
G. Blakley. “Safeguarding cryptographic keys.” In Proc. Nat. Computer Conf. AFPIPS Conf. Proc., 48 pp. 313–317, 1979.
S. Blackburn, M. Burmester, Y. Desmedt, and P. Wild. “Efficient Multiplicative Sharing schemes”. In Advances in Cryptology-Eurocrypt’ 96, LNCS 1070, pp. 107–118, Springer-Verlag, 1996.
C. Blundo, A. De Santis, and U. Vaccaro. “Randomness in Distribution Protocols”. Inform. Comput. pp. 111–139, 1996.
C. Blundo, A. De Santis, R. De Simone,, and U. Vaccaro. “Tight Bounds on the Information rate of secret Sharing Schemes”. In Design, Codes and Cryptography, 11, pp. 107–122, 1997.
C. Blundo, A.G. Gaggia, and D. R. Stinson. “On the Dealer’s randomness Required in Secret Sharing Schemes”. In Design, Codes and Cryptography, 11, pp. 235–259, 1997.
C. Blundo and B. Masucci. Randomness in Multi-Secret Sharing Schemes. In Journal of Universal Computer Science, Vol. 5, No. 7, 1999, pp. 367–389.
C. Blundo and B. Masucci. A note on the Randomness in Dynamic Threshold Scheme. In Journal of Computer Security, Vol. 7, No. 1, 1999, pp. 73–85.
C. Boyd, Digital Multisignatures, Cryptography and coding, Clarendon Press, 1989, pp 241–246.
R.M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, “On the Size of Shares for secret Sharing Schemes” In Journal of Cryptology, 6, pp. 157–167, 1993.
L. Csirmaz. “The Size of a Share Must Be large”. In Journal of Cryptology, 10, pp. 223–231, 1997.
L. Csirmaz. The dealer’s random bits in perfect sharing schemes In Studia Sci. Math. Hungar. 32(1996) pp. 429–437.
A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. “How to share a function”. In Proceedings of the twenty-sixth annual ACM Symp. Theory of Computing (STOC), pp. 522–533, 1994.
A. De Santis, and B. Masucucci. “Multiple Ramp Schemes”. In IEEE Transns. on Inform. Theory, 45, no. 5, pp. 1720–1728, 1999.
Y. Desmedt. Society and group oriented cryptography: a new concept. In Advances of Cryptology-Crypto’ 87
Y. Desmedt, G. Di Crescenzo, and M. Burmester. “Multiplicative non-abelian sharing schemes and their application to threshold cryptography”. In Advances in Cryptology-Asiacrypt’ 94, LNCS 917. pp. 21–32, Springer-Verlag, 1995.
Y. Desmedt and Y. Frankel. “Homomorphic zero-knowledge threshold schemes over any finite abelian group”. In Siam J. Disc. Math. vol 7, no. 4 pp. 667–679, SIAM, 1994.
Y. Desmedt and S. Jajodia. Redistributing secret shares to new access structures and its applications. Tech. Report ISSE-TR-97-01, George Mason University, July 1997 ftp://isse.gmu.edu/pub/techrep/97.01.jajodia.ps.gz
Y. Desmedt, B. King, W. Kishimoto, and K. Kurosawa, “A comment on the efficiency of secret sharing scheme over any finite abelian group”, In Information Security and Privacy, ACISP’98 (Third Australasian Conference on Information Security and Privacy), LNCS 1438, 1998, 391–402.
Y. Frankel, Y. Desmedt, and M. Burmester. “ Non-existence of homomorphic general sharing schemes for some key spaces”, in Advances of Cryptology-Crypto’ 92, 740, 1992 pp 549–557
Y. Frankel, P. Gemmel, P. Mackenzie, and M. Yung. “Proactive RSA”. In Advances of Cryptology-Crypto’ 97, 1997, LNCS 1294, Springer Verlag, 1997, p. 440–454.
Y. Frankel, P. Gemmel, P. Mackenzie, and M. Yung. “Optimal-Resilience Proactive Public-key Cryptosystems”. In Proc. 38th FOCS, IEEE, 1997, p. 384–393.
R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust and efficient sharing of RSA functions”. In Advances of Cryptology-Crypto’ 96, LNCS 1109, Springer Verlag, 1996, p. 157–172.
B. King. “Improved Methods to Perform Threshold RSA”. In Advances in Cryptology-ASIACRYPT 2000, LNCS 1976, Springer Verlag, 2000,p. 359–372.
H.L. Keng. Introduction to Number Theory. Springer Verlag, NY 1982
T. Hungerford. Algebra. Springer-Verlag, NY, 1974.
E. Karnin, J. Greene, and M. Hellman. “On secret sharing systems.” In IEEE Trans. Inform. Theory, 29(1), pp. 35–41, 1983.
E. Kushilevitz and A. Rosen. A Randomness Rounds Tradeoff in Private Computation. In Advances in Cryptology-CRYPTO’ 94, LNCS 839, 1994 pp. 397–410.
R. Lidl and G. Pilz. Applied Abstract Algebra. Springer Verlag, NY 1984
R. Rivest, A. Shamir, and L. Adelman, A method for obtaining digital signatures and public key cryptosystems, Comm. ACM, 21(1978), pp 294–299.
A. Shamir, How to share a secret, Comm. ACM, 22(1979), pp 612–613.
V. Shoup. “Practical Threshold Signatures”. In Advances in Cryptology-EU-ROCRYPT 2000, LNCS 1807, Springer Verlag 2000, p. 207–220.
D. Stinson. Cryptography, Theory and practice. CRC Press, NY, 1995
M. van Dijk. “A Linear Construction of secret Sharing Schemes”. In Design, Codes and Cryptography 12, pp. 161–201, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
King, B. (2001). Randomness Required for Linear Threshold Sharing Schemes Defined over Any Finite Abelian Group. In: Varadharajan, V., Mu, Y. (eds) Information Security and Privacy. ACISP 2001. Lecture Notes in Computer Science, vol 2119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47719-5_30
Download citation
DOI: https://doi.org/10.1007/3-540-47719-5_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42300-3
Online ISBN: 978-3-540-47719-8
eBook Packages: Springer Book Archive